ABSICHERUNG

Safe AI for Automated Driving

11th March 2021, Online, Interim Presentation

Generating synthetic learning, testing and validation data

Dr. Thomas Stauner, BMW AG

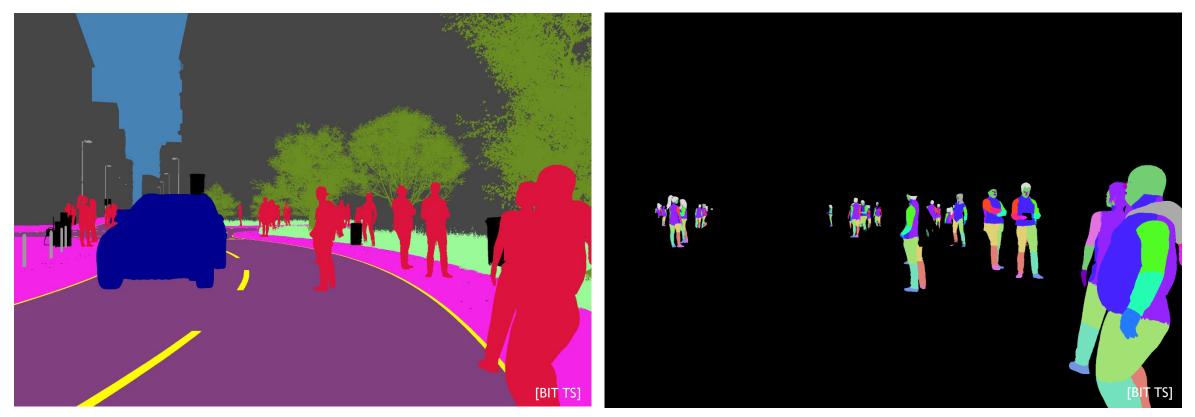
Why are we using synthetic data?

- ML relies on a vast amount of data. Data collection in the real world is not reproduceable. It can hardly support the study of specific effects.
- Synthetic data generation allows us to specify exactly what we want, to control influence factors and introduce targeted variations.

Same sensor position, different scene layouts

Why are we using synthetic data?

Why are we using synthetic data?



2d bounding boxes

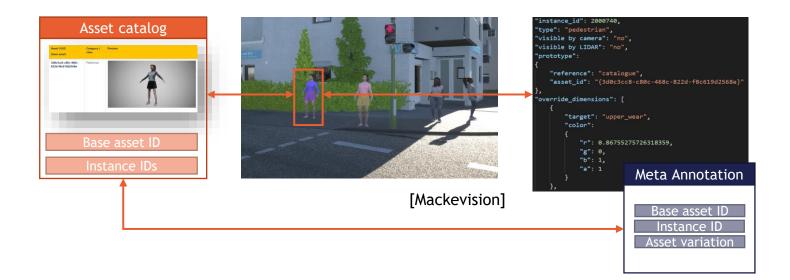
3d bounding boxes

Semantic segmentation

Bodypart segmentation

Instance segmentation

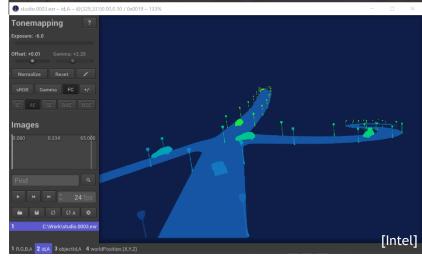
Pose data


Depth map

Lidar instance segmentation (WIP)

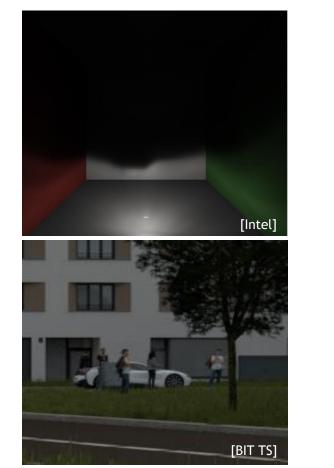
For safety analysis, diverse meta data for synthetic images can be computed

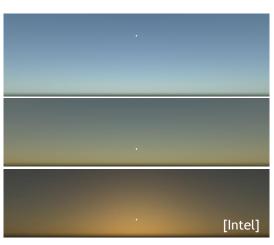
- For the systematic analysis of weaknesses of an AI function, rich meta information is required.
- It allows the engineer to retrieve semantic information w.r.t. an ontology for the situation depicted in a frame. Examples are body size of pedestrians or clothing colors.
- The implementation of such meta information requires considerable one-time effort.



Halftime in data production

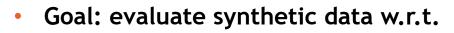
- ~100K frames were produced in 4 delivery tranches, with increasing complexity and increasing amount of annotations and metadata.
- A new data production toolchain with support for sensor models has been prepared:
 - Integration of Intel OSPRay Studio into BIT TS pipeline
 - Open glTF-based interface
 - Support for native materials
 - Support for animation, skinning, HDRI
 - Rich groundtruth + metadata
 - Valeo LIDAR plugin
 - PoC, 3 echos per point
 - WIP: tests, validation





Completed extensions of OSPRay and error generator for future image features

- Measured light sources
- Sun-sky-illumination model
- Light: radiometric quantities
- Pixel filters
- Optimizations and bugfixes (e.g. HDRI poles)
- Error generator for
 - Contrast, distortion,
 - chromatic aberration, noise, blurring



Quality evaluation is an essential part of synthetic data generation

Does the data cover the relevant part of the world?

Correctness

Is the data plausible w.r.t. the ODD (operational design domain)?

Relevance

How do data variations affect training and inference performance?

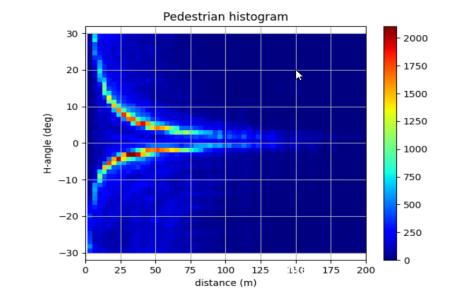
Extended goals

Transferability of the quality evaluation to other data sets Methods to bridge the domain gap

Prerequisites

- Availability of a notion of completeness
- Methods to measure coverage
- Methods to assess effect of coverage gaps
- Knowledge of the ground truth -> calibration
- Measurability of "generated" and "subjective" ground truth
- Methods to measure tool-induced deviations
- Measurement of training success w.r.t. reference data set
- Measurement of detection probability
- Availability of homogenous meta information
- Automated post-processing tools
- Application of domain adaption methods to bridge domain gaps

Quality evaluation example: a data set needs to be evaluated as a whole

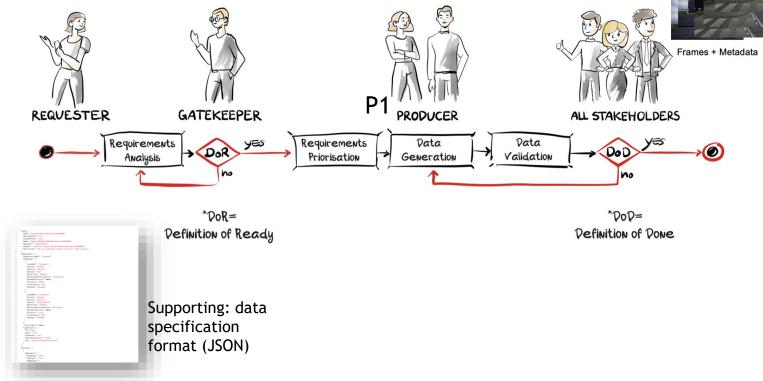


• Quality aspect: pedestrian position

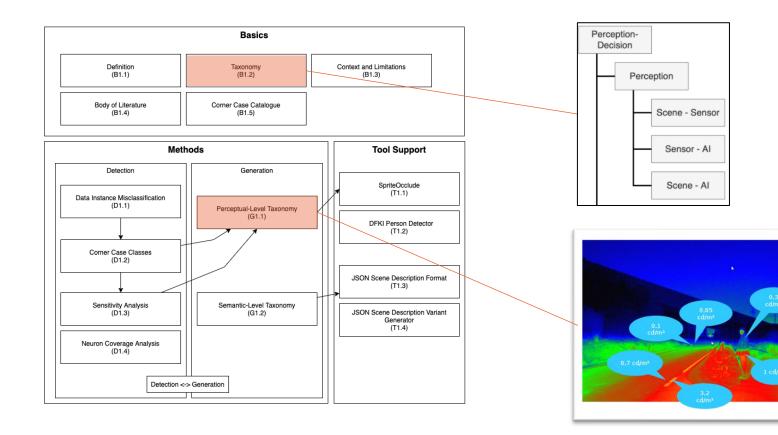
30+pedestrians hidden in the single image.

• Measurement and evaluation

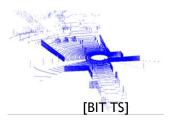
Distribution histogram of an example data set showing unexpected sharpness.


Requirements management process for diverse requirements established

Requirements for Al development Requirements for safety analysis **P**1 PRODUCER REQUESTER GATEKEEPER Requirements Requirements Pata -> DoR \rightarrow Generation Analusis Priorisation **Requirements on** optical quality *DoR= **Pefinition** of Ready


Tech. requirements from data production

Method framework for systematic elicitation and analysis of corner cases



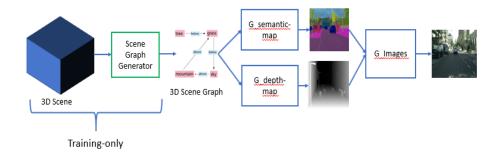
Intermediate key findings in data generation

- The generation of a large data amounts in high quality with rich annotations and meta data is possible.
- High one-time development effort is required to meet typical requirements.
- We are looking forward to using the new toolchain features and to the further learnings from data quality analysis, corner case analysis and safeguarding in general.

Dr. Thomas Stauner, BMW AG Thomas.Stauner@bmw.de

KI Absicherung ist ein Projekt der KI Familie und wurde aus der VDA Leitinitiative autonomes und vernetztes Fahren heraus entwickelt.

www.ki-absicherung.vdali.de 🍯 @KI_Familie in KI Familie


Gefördert durch:

Bundesministeriur für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Appendix: Sensor abstraction. Domain transfer example.

- Exploration of domain adaptation techniques
 - Adaptation of data from one domain to another
 - Idea: Generate scenes on higher level of abstraction (Scene Graphs)
 - 2 Generator Networks infere semantic and spatial layouts from scene graph description
 - 1 Adversarial Network renders "real world" frame from layouts

