

Synthetic Dataset for Pedestrian Detection (synPeDS) - Overview

Bastian Knerr¹, Thomas Stauner², Frédérik Blank³, Michael Fürst⁴, Philipp Heidenreich⁵

Use Case / Overview

This synthetic dataset (camera & LiDAR) is aimed at being used for training, testing and assurance of ML-based pedestrian detection algorithms. Its vast amount of ground truth and metadata enables in-depth data, sensitivity and correlation analyses.

Focus on Training vs. Assurance Data

Dataset designed to include data with focus on:

- Training: high variance and frame2frame variations to increase learning speed and efficiency of DNN
- Assurance: challenging test scenarios, out-ofdistribution datasets and out-of-ODD assets to identify insufficiencies in DNN generalization

Data Generation / Requirement Engineering-Process

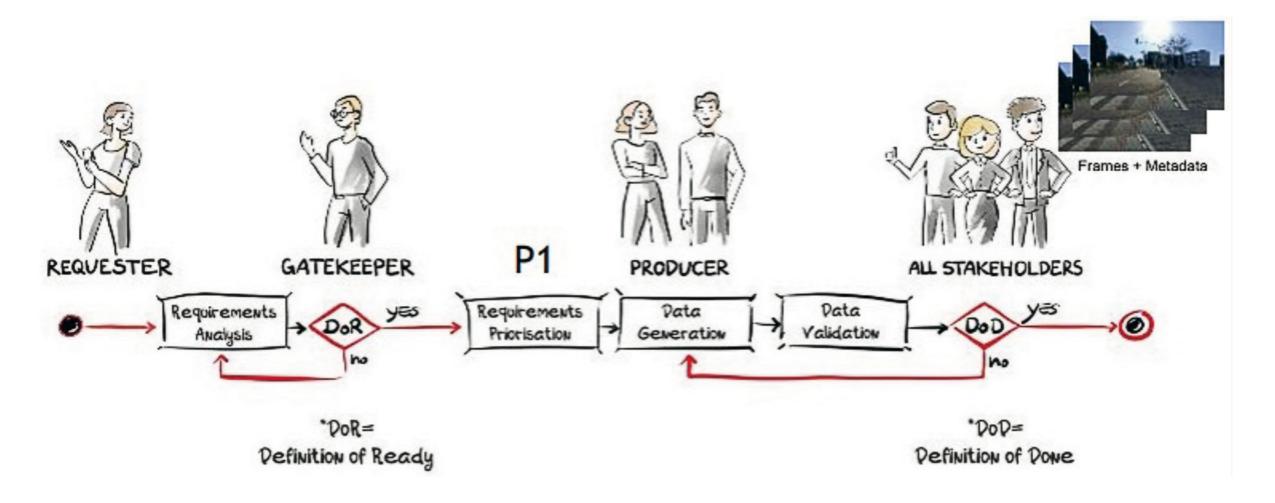


Figure 1: Schematic Data Generation and Acceptance Process

Different sets of requirements:

- RE for AI development
- RE for safety analysis
- RE on optical quality
- Tech RE from data production

Design Process and Content Highlights

The dataset was designed in an iterative, user-focused manner. The data requirement process was based within the P1 process in coordination with TP2. Fix scripts have been applied from AP1.2.

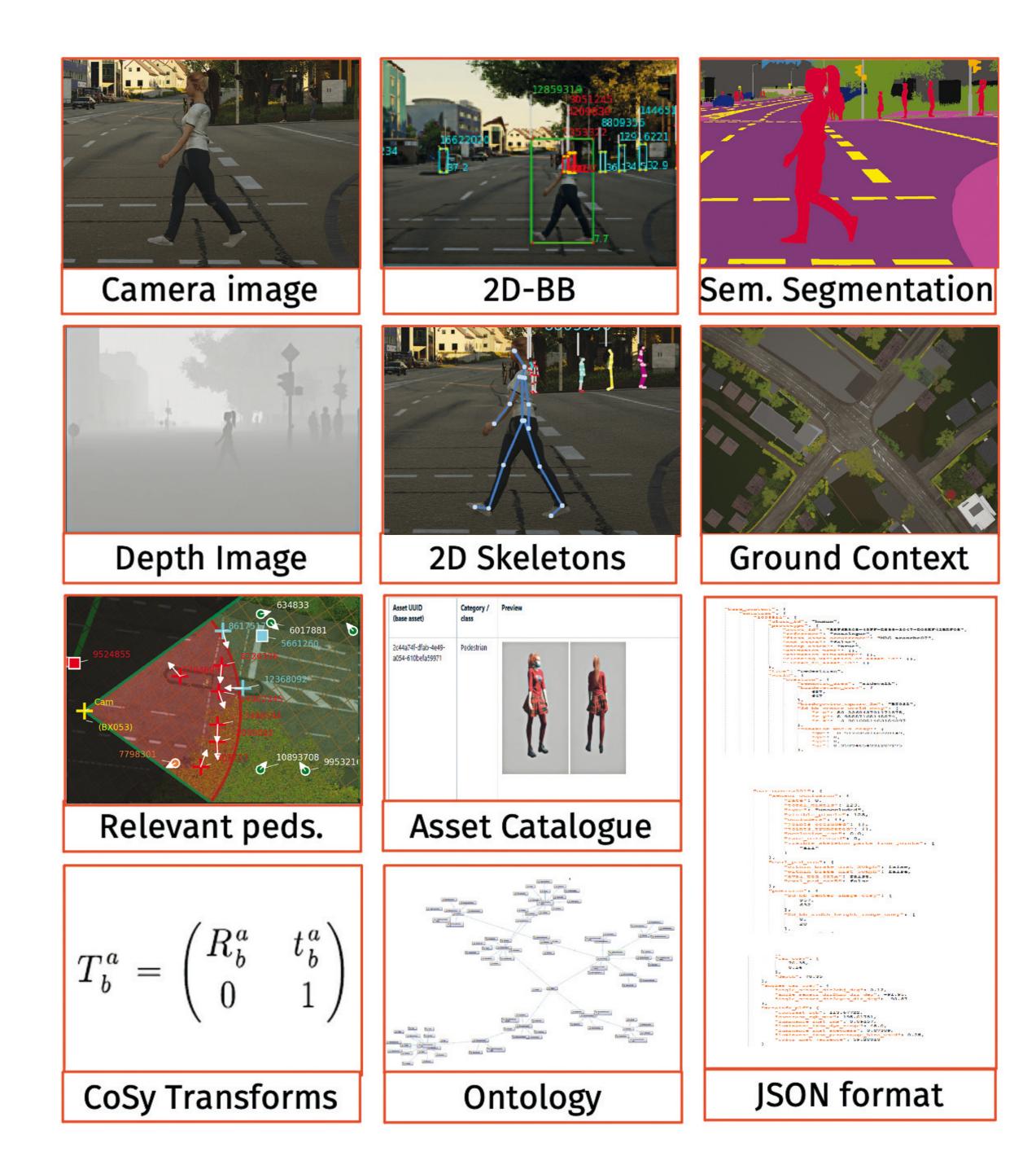


Fig. 2: Ground Truth and Meta Information (2D), Source: Mackevision

Ground Truth and Meta Information

Ground truth includes pixel-accurate information. Additionally, rich meta information w.r.t. the project's ontology is provided and

Tranche	Features included	Data Producer
1, 2	Preparatory measures for large scale data production (tranches not part of published dataset)	BIT-TS, Mackevision
3	Introduction of HDR images for variation in lighting situations (dark to very bright) Further ramp-up for large scale production	BIT-TS BIT-TS
4	Frame-to-Frame variations Meta Information on ASsetIDs Bodypart segmentation Introduction of procedural sun model	BIT-TS, Mackevision BIT-TS, Mackevision BIT-TS Mackevision
5	Integration of sensor noise (postprocessing) Introduction of procedural clouds Ground truth for pose estimation Meta information on occlusion	BIT-TS Mackevision Mackevision Mackevision
6	Environmental effects: wetness, sun glare Out-of-Distribution Assets Data for different camera sensor parameters	Mackevision Mackevision Mackevision
7	Data generation with camera and LiDAR sensor models using physically based rendering with OSPray Data for different LiDAR sensor parameters Environmental effects: fog, vignetting Meta information on AnimationID	BIT-TS BIT-TS Mackevision Mackevision
8	Introduction of night scenes, incl. artificial light	Mackevision
9	Inclusion of specific user requests for data generation (e.g. contrast, material measures)	Mackevision

Table 1: Iterative content build-up of synthetic dataset and highlighted content supports correlation analysis.

Comparison of Dataset (Performance Analysis) Cross-domain generalization performance results evaluated with mIoU on real-world datasets and on synthetic datasets.

Trained	Evaluated Dataset (mIoU)								
Model	Real World					Synthetic			
	A2D2	BDD100k	CS	IDD	ΚΙΤΤΙ	MV	SynPeDS	GTAV	SYNS
SynPeDS	<u>45.76</u>	<u>44.73</u>	55.94	43.87	53.93	<u>55.15</u>	-	<u>40.72</u>	<u>60.00</u>
GTAV	34.69	42.56	39.07	45.17	54.67	48.30	<u>50.41</u>	-	48.83
SYNS	22.67	25.00	<u>59.33</u>	29.59	43.70	35.03	50.25	28.71	-

Table 2: Results of performance analysis

Cross-domain generalization performance of class person results – as aim of pedestrian detection is focus for safety aspects.

Trained	Evaluated Dataset (Person mIoU)								
Model	Real World					Synthetic			
	A2D2	BDD100k	CS	IDD	ΚΙΤΤΙ	MV	SynPeDS	GTAV	SYNS
SynPeDS	42.88	35.98	73.31	58.65	25.40	53.03	-	<u>16.91</u>	72.33
GTAV	47.26	47.04	53.71	76.67	<u>39.78</u>	60.69	76.15		66.57
SYNS	15.04	21.47	<u>73.41</u>	43.52	15.40	20.60	69.24	4.29	-

Table 3: Results of performance analysis with person mIoU

For more information contact: Thomas.stauner@bmw.de Bastian.knerr@qualityminds.de

Based on contribution from following APs & partners: AP2.1, AP2.2, AP2.5, P1, AP2.4, AP4.1, AP1.2

Image sources: Fig. 1: QualityMinds Fig. 2: Mackevision

KI Absicherung is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

https://www.ki-absicherung-projekt.de

W @KI_Familie

MAI_Familie