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Welcome

Dear Readers,

We are pleased to share our insights with you
into our three-year research in the field of safe-
guarding Al functions for automated driving.
Initiated by the VDA Leitinitiative for autono-
mous and connected driving, KI Absicherung
was the first project of the KI Familie. Three
years ago we started to advance the use of

Al in automated driving systems and to shed
light on it from different perspectives. Our Kl
Absicherung project has achieved the goal of
creating an exemplary stringent safety argu-
mentation that will advance the release of Al

function modules in the context of autono-
mous driving. All 24 project partners, have been
working together towards this goal with four
external technology providers over the past
three years. Of course, our first big thank-you
goes to the project consortium and to the sub-
project leads from BMW Group, Volkswagen AG
and Robert Bosch GmbH. Our project part-
ners, which include OEMs, suppliers, techno-
logy providers as well as research institutes
and universities, have worked with relentless
energy and commitment and thus contributed
to the successful completion of our project this
year. The wide array of expertise that they were

able to contribute shows in the extensive and
high-quality results of the research. In addition
and on behalf of our consortium, we would

like to thank our sponsor, the Federal Ministry
for Economic Affairs and Climate Protection
(BMWK) and in particular Mr. Ernst Stockl-
Pukall, who strongly supports the topic of auto-
nomous driving. We would also like to thank
our project officer TUV Rheinland Consulting
for supporting the project. Last but not least,
we would also like to thank the subcontractors
of external technology partners and scientific
institutions, who were also very committed to
the project. Particularly noteworthy is also the
project office EICT, whose advice and organi-
zational input was highly beneficiary to our
work. We are confident that the results we have
summarized on the following pages will be of

great interest to readers from the industry and
research alike. With our methodology for Safe-
guarding Al developed in the project, we want

to contribute to Safe Al in autonomous driving.
We hope that KI Absicherung will lay the foun-
dation for a systematic approach to make the

vision of safe Al in automated driving a reality.
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Dr. Stephan Scholz

Project coordinator
Volkswagen AG
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PD Dr. Michael Mock

Scientific coordinator and

consortium Co-Lead

Fraunhofer Institute for Intelligent
Analysis and Information Systems (IAIS)
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Greeting from the Federal Ministry for
Economic Affairs and Climate Action

With its National Artificial Intelligence Stra-
tegy, the German government has laid out a
framework for promoting and ensuring the
safe and responsible use of Al. The predo-
minant role of Al in the mobility sector will

significantly shape the future of this market.

With the “KI Projektfamilie”, which includes
a total of four projects, initiated as part

of the VDA flagship initiative autonomous
and connected driving the German auto-
motive industry is addressing the central
opportunities and challenges of using Al

in highly automated driving systems.

The project “KI Absicherung” marked the
starting point and has focused on the

highly complex topic of safety over the

past three years. The safety argumenta-

tion developed in the project is an import-
ant building block and brings us one step
closer to the mobility of the future.

As the German Federal Ministry for Economic
Affairs and Climate Protection, we are happy to
support cross-institutional and interdiscipli-

nary research projects such as “KI Absicherung”.

We are convinced that the major tasks that still
lie ahead for the safe use of Al in the mobility
market cannot be solved by individual compa-
nies, but by bringing together different exper-
tise from the science and industry sectors.
Therefore, our thanks goes to the 24 partners
who have worked together over the past three
years to make the safety of Al-based functional

modules in highly automated driving verifiable.

We are pleased that the project has come to
a successful conclusion and that the funding
from the Federal Ministry was able to play a
decisive role in making the project a reality.

Ernst Stockl-Pukall

Head of Division for

Federal Ministry of Economic
Affairs and Climate Action

% Federal Ministry
for Economic Affairs
and Climate Action

Digitalisation and Industry 4.0,
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Figure 1: Approach to Safety Argumentation for Al-based Functions (© BMW Group | Robert Bosch GmbH | Fraunhofer IAIS | Volkswagen AG)
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is part of the joint projects of the KI Familie.
Figure 1 shows the specification and develop-
ment steps of an Al function, as well as

the methodology for building an evidence-
based safety argumentation. This is based

in particular on safety measures, metrics

and tests used in the development and
validation steps of the Al function.

The specification of the Al function is the
elementary starting point, both for the cons-
truction of the safety argumentation and for
the development of the function itself. In
addition to the purely functional requirements,
such as ,recognition of persons on camera
images"”, the specification also includes the
definition of the scope of use of the function,
the so-called Operational Design Domain
(ODD). When using Deep Neural Networks

[8]

(DNN), the ODD specification also results in
requirements for a systematic and represen-
tative selection of training and test data. The
KI Absicherung project develops description
languages and an ontology for the detailed
specification of data and metadata. These

are understandable for humans in order to

be able to build up a comprehensible safety
argumentation, as well as machine-readable

in order to be able to carry out data analy-

ses and test evaluations automatically.

DNNs can be understood as complex black box
approximation functions that are optimized by
training data. As such, they may have insuffi-
ciencies in the generalization capability, which
in the unfavorable case can lead to a weakness
of the software function. In order to syste-
matically address these weaknesses, which

can in particularly be the cause of functional ance to Germany‘s industry and research

insufficiencies, a list of ,DNN-specific safety landscape. Across the domains, all four
concerns” has been developed by Al and safety projects and the interaction between them
experts in KI Absicherung. These must be

taken into account during the safety KI
FAMILIE

lay the foundation for the success-
ful implementation of artificial

analysis and appropriate mitigation intelligence for vehicle concepts

measures must be identified. and systems of the future.

By combining evidences in In short: KI Absicherung aims
the safety argument it can
be demonstrated that the

DNN-specific safety concerns

to enable the safeguarded use
of Al in vehicles; in KI Wissen,
already existing knowledge is
are adequately addressed. made available for Al. KI Delta
Learning increases the learning
The KI Familie competence of the networks and
the KI Data Tooling project will provide a holis-
KI Absicherung is part of the KI Familie. The tic database as well as various methods and
KI Familie represents a unique combination tools for its efficient use in the context of trai-

of projects that are of outstanding import- ning and validation of Al functions in vehicles.



Agenda

09:30 Welcome and introduction to the event 10:30 Coffee Break
Dr. Stephan Scholz (Volkswagen AG)
PD Dr. Michael Mock (Fraunhofer IAIS) 11:00 KI Absicherung: The main results
Fridolin Bauer (BMW Group), Frédérik Blank (Robert
09:40 Welcome by the Federal Ministry for Bosch GmbH), Dr. Fabian Hiiger (Volkswagen AG),
Economic Affairs and Climate Action PD Dr. Michael Mock (Fraunhofer IAIS),
Ernst Stockl-Pukall Andreas Rohatschek (Robert Bosch GmbH),
Dr. Thomas Stauner (BMW Group)
09:50 Keynote: The future of mobility - where are we today?
Wolfgang Miiller-Pietralla (Volkswagen AG) 13:00 Lunch break & interactive poster session
10:15 Kl Absicherung: Project overview, 14:00 Poster session
challenges and results
Dr. Stephan Scholz (Volkswagen AG) 15:10 Parallel presentations
PD Dr. Michael Mock, Fraunhofer IAIS Parallel presentation 1:
Sensor Fusion for Robust Human Pose Estimation
Michael Fiirst (DFKI)
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Parallel presentation 2:

SegmentMelfYouCan:

A Benchmark for Anomaly Segmentation & Entropy
Maximization and Meta Classification for Out-of-Distri-
bution Detection in Semantic Segmentation.

Svenja Uhlemeyer (Bergische Universitat Wuppertal),
Robin Chan (Bergische Universitat Wuppertal)
Parallel presentation 3:

Testing Deep Learning-based Visual

Perception for Automated Driving

Dr. Christian Heinzemann (Robert Bosch GmbH)

15:35

Outlook on standardization
from the perspective of ISO
Prof. Dr. Simon Burton (Fraunhofer IKS)

15:55 Outlook on standardization from the
perspective of DIN/BSI and Zertifizierte KI
Christine FuR (DIN), Daniel Lévenich (BSI),

Dr. Maximilian Poretschkin (Fraunhofer IAIS)

16:15 Coffee Break

16:45 Podium: from the perspective of the KI Familie
Hans-)6rg Vogel (BMW Group), Dr. Jorg Dietrich (Conti-
nental AG), Amin Hosseini (Mercedes-Benz)

17:30 Wrap-up & Farewell
Dr. Stephan Scholz (Volkswagen AG)

PD Dr. Michael Mock (Fraunhofer IAIS)

18:00 End of the event
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Key Facts

Goal & Challenge

KI Absicherung makes the safety of Al-based
function modules for autonomous driving
verifiable. An autonomous vehicle must be
able to perceive its environment and react
adequately to it. The solutions for such envi-
ronment perception must be able to correctly
interpret the movements of other road users
and derive intentions for their continued
behaviour. In highly automated vehicles, these
tasks are increasingly performed by artificial
Intelligence (Al). One of the greatest challenges
in integrating these technologies in highly

[12]

automated vehicles is to ensure the usual
functional safety of previous systems. Existing
and established safety processes cannot simply
be transferred to machine learning methods.

In the KI Absicherung project, a stringent

and provable safety argumentation is being

set up for the first time, with which Al-based
function modules (Al-modules) can be secu-
red and validated for autonomous driving.

Methodological approach

In the KI Absicherung project, methods and
measures are developed that provide perfor-
mance and safety smetrics. These methods,
measures and metrics support the general
safeguarding of an Al function in a car.

On the concrete use case of the

Al-based perception of pedestrians,
consensual approaches to the follo-

wing focal points are developed:

® Selection and further development of Al
algorithms for pedestrian detection with re-
gards to their detection performance against
the backdrop of their safeguarding capability.

® Development and combination of methods
and measures to identify and reduce inhe-

rent insufficiencies of the Al modules.
Stringent development of a safety argumen-
tation and test methodology to prove the
adequate mitigation of inherent insufficien-
cies of an Al module.

In-process creation of synthetic training and
test data sets for the analysis and evalua-
tion of inherent insufficiencies of Al-based
processes.

Data
Generation

| Training ML Function

Metrics

wawanoldw)
Requirements

Safety
Argumentation

Evidence
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In order to move from the data-driven Al
function to an assurance case, using the
example of pedestrian detection to provide

a stringent argument for demonstrating the
safeguarding capability of this Al function, the
following steps are taken (see illustration):

. Process-accompanying generation of
synthetic learning, test and validation data
. Developing methods and measures
to improve the Al function with
respect to a wide range of metrics
. Development and validation of test
methods for these metrics
. Stringent safety argumentation for an

exemplary Operational Design Domain (ODD)

Unique features of the project

In the KI Absicherung project, experts from
the fields of artificial Intelligence and machine
learning, functional safety and synthetic
sensor data generation are working toge-

ther for the first time. In communication with
standardisation committees and certification
bodies, the findings gained in the project will
be used to work towards building an indus-
try consensus on a general Al test strategy.

Dr. Stephan Scholz

PD Dr. Michael Mock

36 Months

€41 M

€19.2 M

24 Project
Partners
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Assurance of Al-based functions requires a methodoloy that
can identify and systematically mitigate inherent weaknesses
in Al functions. The methodology also includes a systematic
generation of Data for training and testing, definition of
safety relevant metrics as bases of an approach for deriving
a stringent evidence-based safety argumentation.

[16]
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Ki-Absicherung: Overall Approach

Stephan Scholz, Volkswagen AG, Michael Mock, Fraunhofer IAIS
Frédérik Blank, Robert Bosch GmbH, Fabian Hiiger, Volkswagen AG
Andreas Rohatschek, Robert Bosch GmbH, Thomas Stauner, BMW Group

The application of Al is a key enabler for autonomous driving. In the Kl Absicherung
project, Al and safety experts from industry and academia develop a methodology for
a safety argumentation that systematically identifies, makes measurable and mitigates
weaknesses of Al functions. The aim is to achieve an industrial consensus for a metho-
dical approach to assure Al functions for the use case of pedestrian detection.

AP5.1

AI-BASED FUNCTION MODULE SAFETY MEASURES & METRICS SAFETY ARGUMENTATION
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Overall approach for assurance of Al-based functions (© BMW Group | Robert Bosch GmbH | Fraunhofer IAIS | Volkswagen AG)
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Towards Safety Metrics
for Automated Driving

Christian Hellert, Continental AG, Fabian Hiiger, Volkswagen AG
Lydia Gauerhof, Robert Bosch GmbH, Timo Samann, Valeo Schalter und Sensoren GmbH
Dominik Briiggemann, BUW, Christoph Thiem, Opel Automobile GmbH

When deploying an Al function into a safety-critical system, safety metrics
are required to quantify the remaining risk towards the defined safety goals.
Thereby, two strategies can be followed to define appropriate safety metrics:
From technology and from application perspective. We showed how to derive
safety metrics from technology level, using specified DNN-specific safety
concerns, and from functional requirements, deduced from system level.

AP3.2 | AP4.2 | AP4.3
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DNN-specific

Data Distribution is not a Good
Approximation of Real World

5C-2.1

Inadequate Separation of
Test and Training Data

Dependence on
Labelling Quality

Specification of
the ODD

Safety Concerns

Safety-aware
Metrics

Lack of
Efficency

Overview of defined DNN-specific safety concerns (© BUW | BMW Group | Robert Bosch GmbH |

SC-3.1

Continental AG | Fraunhofer IAIS | Valeo Schalter und Sensoren GmbH | Volkswagen AG)

Distributional

Shift Over Time SC<L.5

Unknown Behaviour in
Rare Critical Situations
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Metric Benchmarking Tool

Christian Hellert, Continental AG
Christian Brunner, Tom Thielo, Jonas Schneider, Elektronische Fahrwerksysteme GmbH
Dominik Briiggemann, BUW

The Metric Benchmarking Tool (MBT) is an application to perform standard bench-
marks within the project KI-Absicherung. It is designed to enable and simplify
evaluations regarding the effectiveness of mechanisms implemented to improve
pedestrian recognition. The tool uses the KI Absicherung dataset with available
enriched metadata and 2D bounding box predictions provided in the project specific
output format to compute a user specified set of object detection metrics.

AP3.2 | AP3.6

[22]

Annotation Loading

Correlation Filtering

Prediction Loading

Metric

Calculation Reduction

Exporting

Workflow of the Metric Benchmarking Tool. Blue boxes represent processing modules and orange boxes represent

data structures (© BUW | Continental AG | Elektronische Fahrwerksysteme GmbH)
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Synthetic Data Generation
based on a modern Game Engine

Markus Huber, Christopher Hauck, Christian Zilliken, Mackevision Medien Design GmbH

Modern game engines are perfectly suitable for synthetic data generation. With custom
developed modules, the requirements of KI Absicherung data sets such as realism, a
high degree of variance, varying light and weather conditions, and sensor effects are met
with systematic data generation. The extensive amount of ground truth data and meta
annotations allow a wider range of applications in testing and evaluation Al methods.

AP2.1 | AP2.5

[24]

Synthetic data generation allows the adaption to different light and weather situations such as clear sky, wetness, or night scenarios (© Mackevision Medien Design GmbH)
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Overview of Safe Al Mechanism
Landscape and Taxonomy

Alexander Hirsch, Stephanie Abrecht, Robert Bosch GmbH
Gesina Schwalbe, Continental AG

The landscape of Safe Al Mechanisms, which are used to mitigate DNN-specific

(or broader: Al-specific) Safety Concerns, is extremely diverse. With our work we are
structuring this landscape by introducing a Safe Al Mechanism Taxonomy. Further we are
providing a consistent and complete overview of the developed Safe Al Mechanisms in
KI-Absicherung TP3 including a self evaluation using multiple classification criteria.

AP3.6

[26]
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gz

Data-Driven Engineering /
ML Life Cycle | How to derive
systematic data requirements?

Autoren: Andreas Albrecht, Thomas Geipel, Robert Bosch GmbH, Henrik Putzer, fortiss GmbH
Reviewer: Frédérik Blank, Robert Bosch GmbH, Thomas Stauner, BMW Group
Timo Dobberphul, Volkswagen AG, lwo Kurzidem, Fraunhofer IKS

ML models learn their functional behavior implicitely from training data. If relevant
information is missing the ML model will not learn it. So we need to collect well-struc-
tured and well-balanced data sets that comprehensively cover our problem. Due to
the open context nature, we propose an iterative Data-Driven Engineering Process /
ML-LifeCycle Model to systematically derive data requirements and data coverage.

A4.5, P1

- //////,

DDEOD.O DDEO.13

DDE1.12

DDE1.11
DDEZ2.10

Verific. Verific.

DOEIH

Impl. Impl.

Implement.

Implement,

Data-Driven Engineering Process & ML-LifeCycle Model that incorporates ML workflows and

ML Test Strategy and maps to existing process standards (e.g. ASPICE) (© Robert Bosch GmbH)

Data Requirements
Test Data
Development Data
Manitoring
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Physically based synthetic
data generation pipeline

Karl Leiss, BIT Technology Solutions, Johannes Giinther, Intel Corporation
Anja Kleinke, Valeo Schalter und Sensoren GmbH, Marzena Franeck, Robert Bosch GmbH

Synthetic data is a scalable and flexible solution to systematically train & test
Al based systems. A brand new gITF based pipline with exchangeable modules
was developed to increase transferability of synthetic to real data. Apart from a
3D object and scenario management, automized scenario generation, physical
sensor and material effects were incorporated. In the project this new pipeline
was used to generate virtual scenarios along with labels and meta data.

AP21

Raytracing generated synthetic image with procedural sun and physical sensor effects (© Robert Bosch GmbH

| BIT Technology Solutions | Intel Corporation | Valeo Schalter und Sensoren GmbH)
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Pedestrian detector development
using the SSD and the KI Absicherung
synthetic dataset (synPeDS)

Patrick Feifel, Philipp Heidenreich, Opel Automobile GmbH
Frédérik Blank, Simon Heming, Robert Bosch GmbH

The goal of this result is to provide a reference implementation for camera-only 2D
bounding box pedestrian detection. To this end, the SSD has been selected as a
traditional single-stage object detector using anchor boxes. To develop the SSD with the
synPeDS dataset, we describe the necessary adaptions, including strategies to deal with
many small and occluded pedestrians and the evaluation using safety-aware metrics.

AP1.3

Example SSD inference result of r4 (Mackevision Medien Design GmbH Seq84) (© Mackevision Medien Design GmbH | Opel Automobile GmbH)
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Approaches to systematically and where possible semantically
describe and analyze the data input space are covered within
this cluster. This includes the development of an ontology-
based description language enabling concretizing the ODD and
performing possible data coverage analyses as well as allows

to deliver enriched metadata for performing in-depth data-
analyses. Moreover, characteristics of the dataset generated in Ki
Absicherung and of the generation process itself are introduced.

[34]
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Synthetic Dataset for Pedestrian
Detection (synPeDS) - Overview

Bastian Knerr, QualityMinds GmbH
Thomas Stauner, BMW Group
Frédérik Blank, Robert Bosch GmbH
Michael Fiirst, DFKI Depth Image
Philipp Heidenreich, Opel Automobile GmbH

This synthetic dataset (video & LiDar) is aimed at being used for training, testing and

assurance of ML-based pedestrian detection algorithms. It's vast amount of ground

Relevant peds.

truth and metadata enables in-depth data, sensitivity and correlation analyses. ‘ AssetCamlogue || HEE
]{ﬂ {[l
TP2 with TP1+P1, AP4.1 Tb“ = b b
0 1
| CoSy Transforms | Ontology | JSON format

Groundtruth and meta-information for synthetic dataset (© Mackevision Medien Design GmbH | Robert Bosch GmbH | QualityMinds GmbH)
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Using Ontologies in
Automotive Al Applications

Christian Witt, Valeo Schalter und Sensoren GmbH
Martin Herrmann, Christian Heinzemann, Frédérik Blank, Robert Bosch GmbH
Frank Bonarens, Opel Automobile GmbH

Basis of a robust safety strategy for an automated driving function based on neural
networks is a detailed description of its input domain. Ontologies fulfill the task to gather
expert knowledge and model information to enable computer aided processing, while using
a notion understandable for humans. We leveraged the KI-Absicherung ontology to define
the operational design domain, to develop tools for structured data generation, to describe
assets and metadata, and to analyze input domain coverage and DNN performance.

AP41

.

Test Data Variations

Pedestrian
Location

Car 2
Pedestrian Assets & Poses Camera
y Q_ Location
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NCAP-like scenario “pedestrian crosses road between parked vehicles” generated by our tool for structured data generation and based

P

on KI-Absicherung ontology (© Valeo Schalter und Sensoren GmbH | Mackevision Medien Design GmbH| Bosch)
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Methodology of Creating an
Ontology for Dataset Engineering
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to gather expert knowledge and enable computer aided processing, while being

Asset
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our ontology based on a domain analysis with a manifold of sources, followed by St Data

structuring, consolidation, refinement and review steps. The resulting KI-Absiche-
rung ontology serves as a single point for meta data and semantic information.

AP41

Methodology to develop the KI-Absicherung ontology with different manual and automated steps and applied use cases (© Robert Bosch GmbH)
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Automated Corner
Case Detection Pipeline

Namrata Gurung, Niels Heller, QualityMinds GmbH

A method for the identification and characterization of corner cases was developed.
Applying this to the KI-A dataset, a total of eight selection rules were found, each based on
a distinct performance inhibiting feature, which could be categorized under quantitative,
perceptual, and situational inhibitors. Several data visualization tools were developed,
including a tool that calculates the similarity of any given instance to the rest of the data.

AP2.2

[42]
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Enriched metadata in KI-Absicherung
synthetic dataset (synPeDS)

Frédérik Blank, Falko Matern, Robert Bosch GmbH
Philipp Heidenreich, Opel Automobile GmbH, Michael Fiirst, DFKI
Markus Huber, Mackevision Medien Design GmbH, Thomas Stauner, BMW Group

Based on the collaborative work of Al, data and safety experts in KI Absicherung,

the project’s synthetic pedestrian dataset was highly enriched by

adding more than 50 metadata variables valuable to:

- Evaluate DNN-performance based on safety-related criteria (safety-aware metrics)
- Search and cluster images by specific search criteria for (statistical) image analysis
- Define specific training or test datasets

« Link images and object / pedestrian instances to the ontology

This metadata was then used by several partners to develop their own project results. .

P1 | AP4.

[44]

634833
oy

/10393605? 9953216

2635999

MV_arb-camera001-0085-c3c573057ae34c47b003d5adca8fbc71-0050
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Motion Capture & Material Measurements

Markus Bartnick, Markus Huber, Mackevision Medien Design GmbH
Johannes Giinther, Intel Corporation

Synthetic data generation with a high degree of realism and accuracy requires the measu-
rement of key scene elements such as pedestrian motion and material characteristics.
The captured skeletal motion of several persons and their interaction with objects was
transferred to 3D character models (,retargeting”). Cloth and infrastructural materials were
scanned by an X-Rite TAC7 scanner, processed and available in AxF and gITF file format.

AP2.5
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Top row: One of 90 captured pedestrian animations. Bottom row: Five examples of 80 measured material samples (© Mackevision Medien Design GmbH| Intel Corporation )
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Lessons Learned on
Synthetic Data Generation

Nicolas Gay, Maximiliano Cuevas, Ulrich Wurstbauer, Luxoft
Thomas Stauner, BMW Group

Oliver Grau, Korbinian Hagn, Intel Corporation

Falko Matern, Robert Bosch GmbH

The synthetic data generation process and the utilisation of such data for
training and evaluation of Al models involves four well-defined stages:

data specification, data production, data analysis and its usage in a real-world
application. We summarise some of the lessons learned along the process.

AP2.4
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Synthetic scenario and its corresponding semantic segmentation ground truth produced during the synthetic data generation process (© BIT Technology Solutions)
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The method-related Evidence Workstreams cover the DNN-
specific safety concerns about uncertainty, robustness, plausibility
and explainability. In the following, the contributions show
mechanisms to mitigate the safety concerns and describe related
test approaches. Furthermore, aspects regarding the safety
argumentation and determined evidence are described.
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Non-Parametric Uncertainty

Optimization for Bounding Box Regression

MC Dropout

Wasserstein Dropout

Joachim Sicking, Maximilian Pintz, Maram Akila, Fraunhofer IAIS

We propose Wasserstein dropout, an uncertainty estimator for regression tasks.

It adjusts the widths of (dropout-based) sub-network distributions to match
the local data uncertainty. Empirical analysis shows that it is on par with state-
of-the-art methods and outperforms them in terms of consistency and robust-
ness w.r.t. domain shift. Experiments indicate that such properties carry over
to object detect when compared to (vanilla) MC Dropout estimation.

AP3.3
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to object detection (r.h.s) including out-of-domain experiments (lower right), (© Fraunhofer IAIS | KIT)
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Semantic Testing of DNNs
with Proxy Models

Sujan Gannamaneni, Maram Akila, Fraunhofer IAIS

Our ,Semantic Testing” approach evaluates DNNs along semantic dimen-

sions to uncover learnt weaknesses. In contrast to using aggregated metrics, our
method enables more granular testing. In addition to identifying several weak-
nesses, we also evaluate whether the impact of semantic dimensions is indepen-
dent or not. We perform this by the functional decomposition of observations
using marginals of the data distributions, which acts as a simple proxy model.

APL4
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Semantic tests uncover weaknesses in DNNs, and Proxy models uncover independence of the impact of semantic dimensions. (© Fraunhofer IAIS)
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Multivariate Confidence
Calibration for Object Detection

Fabian Kiippers, Hochschule Ruhr West
Anselm Haselhoff, Hochschule Ruhr West

For each detection, a neural network estimates its belief about the correctness.
However, these estimates are known to be too overconfident, i.e., they are misca-
librated. We extend common calibration methods to include additional box infor-
mation into calibration. These methods are trained and evaluated on the TP1
KI-A SSD predictions using the KI-A data sets. We found an underconfidence of
the examined network which is successfully recalibrated by our methods.

AP3.5
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Gradient-Based Uncertainty
Estimation for Deep Object Detection

Tobias Riedlinger, Matthias Rottmann, Hanno Gottschalk, Bergische Universitat Wuppertal

Common methods for quantifying prediction uncertainty tend to be based on
sampling the network output. We introduce gradient-based instance-wise uncer-
tainty measures for object detection refering to model parameters. We compare
intrinsic network confidence to output- and gradient-based confidence estimates on
the TP1 KI-A SSD architecture using TP2 data. A combination of output- and gradient-
based uncertainty metrics yields the most accurate confidence estimation.

AP3.4
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Coverage Guided Fuzz Testing
Framework & Dataset Quality Metrics

f

Dataset quality | Initial / Clean
. evaluation - 1 _| Test dataset

Vivek Vekariya, Mojdeh Golagha, fortiss GmbH

A4

Coverage guided fuzz testing
(Test data generation)

—

1) Identified
corner cases
2) Coverage
information

The trustworthiness of the reported KPIs of DNN lies in the quality of its test
dataset. We propose the test dataset quality metrics to infer various aspects inclu-

ding the latent space coverage of the DNN under test. We also use the coverage

guided fuzz testing to sample the additional test data points. The performance

of various DNNs can be compared using our testing framework. Also, the data | cormercass [ Dataset quality ) AYE B
. . . . . P | —_— ¥ (N iy
points sampled using fuzzing help to maximize the latent space coverage. £ vl Dataset | evaluation - 2 \°
Ex I % N
AP4.4 : L

A framework to evaluate the dataset quality and maximize the latent space coverage using fuzz test generation (© Fortiss GmbH | BIT Technology Solutions)
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Evidence Workstream: Analysis
and Improvement of DNN Robustness

Thomas Schulik, ZF Friedrichshafen AG
Markus Bach, Valeo Schalter und Sensoren GmbH

The robustness of DNNs used for automotive perception systems is a crucial
requirement for the deployment of such algorithms. Therefore, different mecha-
nisms for robustness assessment and robustification are developed. Both of these
tasks use data augmentation techniques that add natural perturbations or adver-
sarial attacks to camera images. To obtain safety evidences, the performance in
the form of the mAP metric is compared for different models and test datasets.

AP3.3 | AP3.5 | AP4.3 | AP4.4 | AP4.5
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Main aspects of the Evidence Workstream (© ZF Friedrichshafen AG | BIT Technology Solutions)
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AugMix: Improving Robustness

via Data Augmentation . - . . . . . . .

Nikhil Kapoor, Serin Varghese, CARIAD 1 + Improved robustness
Fabian Hiiger, Volkswagen AG Combined + Improved generalization
using AugMix + -
Data augmentation is a powerful technique of achieving robustness and improved gene- Data efficient
ralization on unseen data. AugMix is a state-of-the-art data augmentation technique that
Clean image nugm:x image

Tralnlng

helps improve model robustness. It combines several augmentations that are sampled
stochastically and layered together to produce high diversity of augmented images. The
method helps improve model generalization on unseen data and cope with corner cases.

Evaluation on 14
unseen ,real-world”
corruptions

Deeplabv3

ResNet 101 Merantix Evaluation

AP3.3
(KIA model by Intel) Framework

High-level overview of training and evaluation setup of AugMix (© Volkswagen AG | BIT Technology Solutions)
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Visual Exploration and Semantic
Analysis of DNN Weaknesses with ScrutinAl

Elena Haedecke, Michael Mock, Fraunhofer IAIS

The interactive tool ScrutinAl is a visual analytics approach for the semantic
analysis of DNN outputs. It supports analysts and/or auditors in utilizing their
semantic knowledge to identify the causes of incorrect predictions by enabling
a visual exploration of systematic DNN weaknesses. The method addresses

the safety concern incomprehensible behavior. Insights gained support model
improvement and foster a safety argumentation for Al applications.

AP3.6
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Evidence Work Stream: Incomprehensible
Behavior and Insufficient Plausibility

Martin Schels, Gesina Schwalbe, Continental AG
Esra Acar-Celik, Tianming Qiu, fortiss GmbH
Elena Haedecke, Michael Mock, Fraunhofer IAIS

In this poster, EWS-3, which revolves around the safety concerns ,Incom-
prehensible Behavior and Insufficient Plausibility” are introduced. We
investigate 3 different TP3 methods that line up for this task:

+ Concept embedding and hybrid learning (Continental AG)

« Visual analytics (Fraunhofer IAIS)

« Attention based heatmaps (fortiss)

We show corresponding GSN fragments and also how to bridge the gap
between data driven development and our safety argumentation.

AP4.3
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Strategy: S2_decomposition_...
Argument over representation and
reasoning of DNN

+ Assumption: A2-1_plausibility
Plausibility issues are covered by
representation and reasoning of DNNs

+ Goal: G4_causal_and_semantic_reasoning

Causal and semantic relations between semantic
features and reasoning by DNN are relevant

4 Goal: G5_; ion_c i cy_validati

DNN model reasoning is consistent with a generated
heat map

Contributions to EWS-3 (© BIT Technology Solutions | fortiss GmbH | Continental AG)
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DNN specific Safety Concern:

[71]
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Our approach optimizes prior work for associating a semantic concept (e.g.
model (CM) is trained to predict presence of the concept from an activation map
cation applications are investigated: Verify internal representation of concepts,

pixel in the layer output. The CM weights are the CAV. Several CM
inspect internal logic, and check compliance with fuzzy logic rules.

with vectors (CAVs) in the DNN latent space. For a layer a small linear concept

Gesina Schwalbe, Martin Schels, Continental AG

AP3.3 | AP3.4

main task

Concept analysis approach (© Continental AG)
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Input Coverage Analysis using Domain Models and Combinatorial TEStiNG . .......ovuituiiuiiuiiniiieeineeneeneeneensensensenss 74

ENCAP Standard oriented scenarios for DNN performance eValtuation. ..........coeeeteeeeeeneneoeesacencnsosesesencnsasesasans 76
Applying Image Analysis, Combinatorial and Search-based Testing for DNN-Verification. ...........cceeetieeeenenreraeencncncanes 78
Performance Limiting Factors (PLFs) Data-related evidence WoOrkstream . ............c.ceuiiueineeneeneenecneenecneancencanaanns 80
Automated Al Validation using deep variational data synthesis. ...........ccoieniiiiiiieeueeneneneeeeneneneeacnsaaeannsnnnns 82

The data-related Evidence Workstreams cover the data related safety
concern of inadequate data distribution as well as performance
limiting factors. Therefore, the contributions presented in the
following address coverage of the ODD and systematic analysis

of the elements of the domain model on DNN performance.
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Input Coverage Analysis using
Domain Models and Combinatorial Testing

Christian Heinzemann, Martin Herrmann, Frédérik Blank, Lydia Gauerhof, Robert Bosch GmbH

Input coverage uses a domain model describing semantic features of input images
of a DNN and argues coverage of a training or test dataset with respect to this
domain model. Due to the usually high number of semantic features, a full explo-
ration of a domain model is prohibitive. Therefore, we leverage combinatorial
testing techniques for defining a weaker notion of coverage for dataset analysis
that provides better scalability. We conducted an experiment indicating a rela-
tionship between low sample count of features and low DNN performance.

APL 4. | AP41 | AP4.3 | P1

[74]

[ Aoct nedestrians pedestrian_distance

Zwicky box HeatMap (6787 frames, 200068 seeds, r\statistics\sequences\MV4-6-training-validation)

sun_elevation

sun_azimuth_ego_refative

hair_color
clothing_upper_part_type
clothing_lower_part_type
dlothing_length
wisible_joint_head
wisible_joint_tarse
visable_joint_legs

wisible_joint_arms

estrian_location

pedestrian_pose

pedestrian_background_contrast
pedestrian_hip_direction_to_sensor
road_surface

mad_guality

road_wetness

number_of_ped_in_image

mumber_of SRP50_in_image

ow
6.9%
front
16.8%

e
 Female.

migdim
15.8%
front-ngh

slightly m

rear-nght
17.4%
Ceber

rearoft

rear T
16.6% 165.4% 16.5%

m 12Gem-160c >20dcm
40% [
Bond Red Crey
30.8% 4.4% 0.0

Top
0.0%
UpperThigh
29%
sdewalk_n
12.8%
very_high
29%

wat with p A o .
15% L%
15 610 1120 m
16% 39% 1L3%
NUME 15 10 1120 =20
0.0% 20.1% 7% 3 2.8%
1] 2 4 ] B 10

Input coverage for training data set in Mackevision Medien Design GmbH tranches #4, #5, and #6 on single parameters. Missing parameter

values (marked by red font color) for n=1result in even more missing value pairs for n=2 (© Robert Bosch GmbH)

1005

80%

60%

F20%

[75]

:u192u0) Mvyes aynads NNa



: : . . o - A Y " 5
ENCAP Standard oriented scenarios Pl =" S R
i e R S — : E . - :
e - e | |t R L =
for DNN performance evaluation -' B W= c=fEsaaa 2
B ST WD, = o ool M i i
& e & | W I wm  _w —
Thomas Schulik, ZF Friedrichshafen AG
Michael Schuldes, FKA GmbH Scenario definition
Martin Herrmann, Frédeérik Blank, Robert Bosch GmbH
Markus Huber, Mackevision Medien Design GmbH
ol [l
The performance assessment within standardized scenarios like in the ENCAP &
specification is crucial and important step for the homologation of AD systems data reqUest tool

in future. For an efficient scenario definition and data production a semi-auto-
mated process with a machine-readable format was evolved. The evaluation has
shown that the pedestrian pose, bounding box aspect ratio and contrast has a JSON’s

strong impact on the detection performance of the DNN (SSD) under test.

AP2.5 | AP4.1 | AP4.4 | P1

Data production Evaluation
1. Overall process for test set defintion and parameter variation

2. Efficient pose selection from pestrian animation and realization of machine readable format (© ZF Friedrichshafen AG | Robert Bosch GmbH | Mackevision Medien Design GmbH)
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Applying Image Analysis,
Combinatorial and Search-based
Testing for DNN-Verification

Christoph Gladisch, Falko Matern, Frédérik Blank, Martin Herrmann, Simon Heming, Robert Bosch GmbH

Rigorous and systematic testing of Al requires new approaches focusing on data.
Our approach is to extract information in form of ontology parameters (a.k.a.
dimensions) from a labelled image dataset and from the DNNs predictions and
to use a collection of black-box testing and analysis techniques. As experiments,
we applied search-based testing, combinatorial testing, image analysis, distribu-
tion and correlation analysis, and structured image generation techniques.

AP4.4 | AP4A | AP2.4 | AP1.2 | P1
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Performance Limiting Factors
(PLFs) Data-related evidence Workstream

Frédérik Blank, Lydia Gauerhof, Christoph Gladisch, Falko Matern, Robert Bosch GmbH
Oliver Grau, Korbinian Hagn, Intel Corporation
lwo Kurzidem, Fraunhofer IKS

Performance Limiting Factors are measurable factors, either of a direct physical

or a model of an effect that leads to drops in perception performance. The argu-
mentation provides evidence to identify and mitigate PLFs: Usage of a-priori know-
ledge about physical and technical system context and methods to identify

PLFs. Mitigation includes: Retraining with updated dataset, Possible compo-

nent modifications and by different component(s) on system-level.

AP1.2 | AP2.4 | AP4.3 | AP4.4 | P1

Schematic overview of the GSN safety argumentation for PLF mitigation (© Robert Bosch GmbH, FhG IKS)



Automated Al Validation using
deep variational data synthesis

Korbinian Hagn, Oliver Grau, Intel Corporation

Automating Al validation through variational data synthesis enables detec-
tion of flaws in the DNN predictions. By generation and synthetization of
highly parameterizable inner-city street scenes and a realistic sensor simu-
lation, detection errors are spotted by the VALERIE flow control.

AP21 | AP2.4 | AP4.4
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VALERIE detects perception faults like missed pedestrian detections (red) in a scene through variations of the scene parameters, e.g., the sun position (© Intel Corporation )
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This section presents selected methods and measures

from KI Absicherung that systematically determine and

reduce inherent insufficiencies of Al functions. These
mechanisms are examined and evaluated with respect to their
significance in terms of safety and their effectiveness.
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Improving Predictive Performance
and Calibration by Weight Fusion

in Semantic Segmentation
Z 1 for k in checkpoint|0]|’state dict’].keys():

* 2 - ? —
Timo Samann, Valeo Schalter und Sensoren GmbH Ch@Cprlﬂt_fused[ State_dlCt ][k] T \

Ahmed Hammam, Opel Automobile GmbH, Andrei Bursuc, Valeo.ai alpha k CheCprint [0] [’St ate dlCt 7] [k] —|— \
Christoph Stiller, Karlsruhe Institute of Technology, Horst-Michael GroB, Ilmenau University of Technology 3 3 e 3
4 beta * checkpoint|1]['state dict’]|[K]

Contributions:

(i) Our weight fusion method improves predictive performance and calibration without
impacting runtime cost. (ii) We introduce a new testing method that can measure

the functional space between weights, called oracle testing. (iii) We show the super-
iority of our approach in a comparison with Stochastic Weight Averarging (SWA) and
deep ensembles for in-distribution as well as for out-of-distribution data (ACDC).

bo

[

AP3.6 | AP3.4 ) ) .
! PyTorch code snippet of our weight fusion approach (© Valeo Schalter und Sensoren GmbH)

[86]

‘uw1ddu0) Mvyes dynads NNa



Insights into CNN Decision-Making via
Embedded Sparse Mixture-of-Expert Layers

Svetlana Pavlitskaya, Christian Hubschneider, Michael Weber, J. Marius Zollner,
FZI Forschungszentrum Informatik
Lukas Struppek, Karlsruher Institut fiir Technologie (KIT)

parsely-gated mixtures of experts (MoEs), embedded directly into the CNN layers,
allow for end-to-end training without explicit dataset splits. We propose con-
straints to balance expert utilization during training and thus to control the trade-
off between model performance and expert specialization. Embedded MoEs

can provide additional insights into the decision-making process of CNNs, as
experts can implicitly focus on individual sub-domains of the input space.

AP3.6
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Assignment of input samples to specific experts in the MoE embedded into the last ResNet block of ResNet-18

for image classification on CIFAR-100 (© FZI Forschungszentrum Informatik)
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Morphological aggregation of
heatmaps with Wasserstein k-means

Gregor Richter, Alicia jimenez Herrera, Sabine Hug, umlaut
Dennis Herbik, ehemals umlaut

Saliency maps allow highlighting prediction relevant input features thus explai-
ning individual predictions. We extend the saliency map Layer-wise Relevance
Propagation (LRP) to object detection. Heatmaps generated via LRP are local,
hence we consider aggregation by morphological clustering in order to reduce
the complexity of the derived dataset of explanations. Yet, limitations of saliency
map evaluation metrics make the benefit to a safety argumentation unclear.

AP3.1
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Out-of-Distribution Detection
in Semantic Segmentation

Robin Chan, Svenja Uhlemeyer, Matthias Rottmann, Hanno Gottschalk, University of Wuppertal

Objects from unknown classes are also considered as ,out-of-distribution“ (OoD)
examples and their detection is extremely safety-relevant in many real-world
applications, particularly in high-stakes applications like automated driving. In
this work, we approach OoD detection in semantic segmentation. We present

a method that achieves significant OoD detection improvements while sacri-
ficing only marginally in original semantic segmentation performance.

AP3.3
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Softmax Entropy

OoD Training

Comparison of OoD predictions with our OoD training approach (bottom row) and without (top row).

The predictions are obtained by thresholding on the softmax entropy heatmaps (© BUW)
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Analyzing the effect of pruning
on the robustness of DNNs

Sven Mantowsky, Firas Mualla, ZF Group

In order for state of the art DNNs to meet the restrictions of embedded systems,
they need to be compressed while not only keeping their accuracy but also
maintain their safety requirements. To evaluate the robustness of models

after compression in comparison to their baseline, we analyze two diffe-

rent metrics: Heatmap correlation and Expected Calibration Error.

AP3.3
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Extension of Deep Taylor
Decomposition to Object Detection

Firas Mualla, ZF Group

The Explainable-Al method Deep Taylor Decomposition (DTD) addresses the safety
concern incomprehensible behavior. It delivers some insights, as to which pixels contri-
bute to the model’s decision. Compared to other heatmap methods, it also claims

kind of theoretical soundness based on Taylor decomposition. We extended the
method from classification to object detection, namely to the Single Shot Detector
(SSD). As there is no corresponding ground truth, the evaluation was done based

on an offline temporal stability analysis. In addition, we examined a possible appli-
cation of the DTD method for the detection of adversarial attacks on SSD.

AP3.4
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Sensor Fusion for Robust Pedestrian
Detection and Human Pose Estimation

Michael Fiirst, DFKI

Precise 3D localization of pedestrians is critical for AVs. However, current camera
only approaches suffer from depth ambiguity. LiDAR only approaches have perfect
depth perception, but lack resolution required for reliable long range pede-

strian detection. By adequately fusing information from multiple types of sensors,
the strengths are combined and weaknesses mitigated. Our work highlights diffe-
rent advantages and shortcomings of Camera, LiDAR and fusion approaches.

AP1.4 | AP1.5
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Depth ambiguity leads to the skeletons being far off the ground truth bounding box in RGB only (left). With fusion the error

is significantly reduced (right) (© 2019 UM & Ford Center for Autonomous Vehicles (FCAV) | DFKI)
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Analysis and Comparison of
Datasets by Leveraging Data
Distributions in Latent Spaces

Hanno Stage, Lennart Ries, Eric Sax, FZI Forschungszentrum Informatik

One insufficiency of DNNs is their ability to generalize from given training data.
To mitigate this, methods for the detection of domain shifts between training
and validation data are necessary. We showed that latent spaces of VAEs can be
used find domain shifts between data sets during early development. We inves-
tigated numerous VAEs, distance metrics and exemplary domain shifts, where

a Joint VAE with a probabilistic distance metric provided best results.

AP3.5
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Self-compressing online pruning

Pruned Kernels inference_time_batch Validation mloU
0.95 5.5 0.86
Konstantin Ditschnuneit, Johannes Otterbach, Merantix Momentum GmbH 0.0
0.85
State-of-the-art semantic segmentation models are characterized by high para- 0.80
meter counts and slow inference times, making them unsuitable for deployment in 0.75
resource-constrained environments - such as within autonomous driving vehicles. 0.70
The proposed algorithm predictably prunes models to a given performance or 0.65
minimum inference speed. Thus allowing the user to prune models up to the 0.60
exact inference speed required for the given task and available hardware. O3
0.50
AP3.3 0.45
null

Correlation between pruned convolution kernels, inference time per batch and mean loU on the validation split (© Merantix Momentum GmbH)
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DNN Performance
Limiting Factors Analysis

Yasin Bayzidi, Alen Smajic, Volkswagen AG

Deep Neural Networks might face challenging situations that hinder their detec-
tion performance. Recognizing such situations in a systematic way would help to
recognize the factors that contribute to their mis-behaviour. To do so, 23 perfor-
mance limiting factors are extracted from two data-sets and analyzed throug-
hout six pedestrian detection models. The factors are categorized into two
categories based on color and texture or geometrical properties.

AP2.2
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This section discusses contributions to an evidence-based
safety argumentation in order to support a convincing safety
assurance case for the ML-based pedestrian detection.
Moreover, it showcases test and analysis methods that can be
used to generate evidences and puts them into context.
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Perspectives on Safety:
Estimating and Proving

‘Deep Neural Network Verification £

Estimating Uncertainty ~ Proving Robustness _
Tom Thielo, Christian Brunner, Kai Fabi, Jonas Schneider, Elektronische Fahrwerksysteme GmbH Unc?verlnw_ DEElis Guaral.'lte-es fHAoWR Scenafias
, Approx_maed Variance Propagation Photometric Robustness Checker

Class Prediction Human [} :os!:fon fjredlctlc;n | gnglnzl-l:re:mhon gr:gunal Prechc:mz .
Class Confidence | 97.2% || osition Uncertalinty W = Ground Trut [ Counterexample Prediction

To deploy a deep neural network in a safety critical application, it is crucial
Class Uncertainty |+1.5% [ - | LAY I _

to verify its intended behavior. By applying approximated variance propaga-

tion for real-time uncertainty estimation, we uncover unknown unsafe scenarios
during development and operation by live monitoring. Additionally, before relea-
sing an Al model, we derive guarantees for known scenarios by proving the robust-
ness of the models predictions, e.g., against photometric transformations.

|

AP3.4 | AP3.5

The neural network is certain in its prediction, but not robust under transformations. (© EFS GmbH | Mackevision Medien Design GmbH)
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Safety Case Patterns for the
Argumentation of a Sufficient Database

Markus Bach, Valeo Schalter und Sensoren GmbH
Christian Hellert, Continental AG
Lukas Bergmann, Volkswagen AG
Christian Pfister, Automotive Safety Technologies

The database has an essential influence on the development and evaluation of DNNs.
Consequently, the safety argumentation must include evidences for a sufficient database
for the intended functionality. In this context, three main data properties were identi-
fied: representativity, fidelity and accurateness. We have created a Safety Case Pattern
for each property and instantiated it in the context of the KI Absicherung use case.

AP4.3
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Overview of identified Data Properties — Representativity, Fidelity and Accurateness (© Continental AG)
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Elicitation of Machine Learning
Safety Requirements via STPA

Stefan Blasius, Fridolin Bauer, BMW Group, Esra Acar-Celik, fortiss GmbH

Christian Pfister, Automotive Safety Technologies, Martin Schels, Continental AG
Markus Bach, Valeo Schalter und Sensoren GmbH, Lukas Bergmann, Volkswagen AG
Asim Abdulkhaleq, Shervin Raafatnia, Robert Bosch GmbH

We present our experience with applying System-Theoretic Process Analysis (STPA)
to a Machine Learning (ML) based pedestrian collision avoidance system. STPA

is integrated into the safety life cycle of functional safety (ISO 26262) comple-
mented with Safety of the intended Functionality (ISO/PAS 21448) in order to elicit
safety requirements. The requirements are derived using DNN-specific Safety
Concerns and Performance Limiting Factors in ML specific Loss Scenarios.

AP4.2
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Safety Argumentation Structure and
Safety Requirements for the Al Function

Argumentation
Requirements

v
. .. . . . . Assurance Case «@— P3 Process
Christian Pfister, Automotive Safety Technologies, Martin Schels, Continental AG —
Esra Acar-Celik, fortiss GmbH, Markus Bach, Valeo Schalter und Sensoren GmbH, Stefan Blasius, BMW Group _
Iwo Kurzidem, Fraunhofer IKS, Lukas Bergmann, Volkswagen AG, Lydia Gauerhof, Robert Bosch GmbH ) ]
Safety Goals Residual Risk
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Evidence-based Safety Argumentation:
Approach and Organizational Setup

Andreas Rohatschek, Robert Bosch GmbH
Thomas Schulik, ZF Friedrichshafen AG
Christian Pfister, Automotive Safety Technologies GmbH

According to the principles of ISO 26262, ISO/DIS 21448, and ISO/TR 4084, the assurance
case shall state in a convincing way: ,The system is safe because...”. The central aspect of
safety argumentation is to show that the mitigation of insufficiencies was successful. If
the insufficiency is reduced to an acceptable level, this provides evidence to be used in

the safety argumentation. This is supported by considering DNN-related safety concerns.

AP4.3
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Structure of the Overall
Safety Argumentation

Christian Pfister, Automotive Safety Technologies
Esra Acar-Celik, fortiss GmbH

Andreas Rohatschek, Robert Bosch GmbH
Markus Bach, Valeo Schalter und Sensoren GmbH

The safety argumentation is structured in 2 layers: The overall GSN graph is the top-level
part. We argue, inside the ODD, over the mitigation of Hazards and their corresponding
Unsafe Control Actions down to the level of the Al component. Here, we argue over the
avoidance of Loss Scenarios with corresponding causal factors (e.g. Safety Concerns, Perfor-
mance Limiting Factors), supported by fulfilling the Machine Learning Safety Requirements.

AP4.2 | AP4.3
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Proposal for a ML Test Strategy

=
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Thomas Stauner, BMW Group
Andreas Albrecht, Robert Bosch GmbH

DDE0.13 |

: Association of
' Kl-Absicherung
: Test Strategy
'
'

with ML Life Cycle

The ML test strategy of Kl Absicherung consists of a set of recommendations of methods
to be used for testing of DNN-based object detection functions. It is specified relative
to the ML-LifeCycle and also addresses verification activities for the dataset.

The activities, their objectives and associated methods are described in the poster.

For most method classes several concrete methods were developed in the project.
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Association of the test strategy with the ML-LifeCycle (© Robert Bosch GmbH)
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