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Dear Readers,

We are pleased to share our insights with you 
into our three-year research in the field of safe-
guarding AI functions for automated driving. 
Initiated by the VDA Leitinitiative for autono-
mous and connected driving, KI Absicherung 
was the first project of the KI Familie. Three 
years ago we started to advance the use of 
AI in automated driving systems and to shed 
light on it from different perspectives. Our KI 
Absicherung project has achieved the goal of 
creating an exemplary stringent safety argu-
mentation that will advance the release of AI 

function modules in the context of autono-
mous driving. All 24 project partners, have been 
working together towards this goal with four 
external technology providers over the past 
three years. Of course, our first big thank-you 
goes to the project consortium and to the sub-
project leads from BMW Group, Volkswagen AG 
and Robert Bosch GmbH. Our project part-
ners, which include OEMs, suppliers, techno-
logy providers as well as research institutes 
and universities, have worked with relentless 
energy and commitment and thus contributed 
to the successful completion of our project this 
year. The wide array of expertise that they were 

able to contribute shows in the extensive and 
high-quality results of the research. In addition 
and on behalf of our consortium, we would 
like to thank our sponsor, the Federal Ministry 
for Economic Affairs and Climate Protection 
(BMWK) and in particular Mr. Ernst Stöckl-
Pukall, who strongly supports the topic of auto-
nomous driving. We would also like to thank 
our project officer TÜV Rheinland Consulting 
for supporting the project. Last but not least, 
we would also like to thank the subcontractors 
of external technology partners and scientific 
institutions, who were also very committed to 
the project. Particularly noteworthy is also the 
project office EICT, whose advice and organi-
zational input was highly beneficiary to our 
work. We are confident that the results we have 
summarized on the following pages will be of 

great interest to readers from the industry and 
research alike. With our methodology for Safe-
guarding AI developed in the project, we want 
to contribute to Safe AI in autonomous driving. 
We hope that KI Absicherung will lay the foun-
dation for a systematic approach to make the 
vision of safe AI in automated driving a reality.

Welcome

PD Dr. Michael Mock
Scientific coordinator and 
consortium Co-Lead
Fraunhofer Institute for Intelligent 
Analysis and Information Systems (IAIS)

Dr. Stephan Scholz
Project coordinator 
Volkswagen AG 
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With its National Artificial Intelligence Stra-
tegy, the German government has laid out a 
framework for promoting and ensuring the 
safe and responsible use of AI. The predo-
minant role of AI in the mobility sector will 
significantly shape the future of this market. 
With the “KI Projektfamilie”, which in cludes 
a total of four projects, initiated as part 
of the VDA flagship initiative autonomous 
and connected driving the German auto-
motive industry is addressing the central 
opportunities and challenges of using AI 

in highly automated driving systems.
The project “KI Absicherung” marked the 
starting point and has focused on the 
highly complex topic of safety over the 
past three years. The safety argumenta-
tion developed in the project is an import-
ant building block and brings us one step 
closer to the mobility of the future.
As the German Federal Ministry for Economic 
Affairs and Climate Protection, we are happy to 
support cross-institutional and interdiscipli-
nary research projects such as “KI Absicherung”. 

We are convinced that the major tasks that still 
lie ahead for the safe use of AI in the mobility 
market cannot be solved by individual compa-
nies, but by bringing together different exper-
tise from the science and industry sectors.
Therefore, our thanks goes to the 24 partners 
who have worked together over the past three 
years to make the safety of AI-based functional 
modules in highly automated driving verifiable. 
We are pleased that the project has come to 
a successful conclusion and that the funding 
from the Federal Ministry was able to play a 
decisive role in making the project a reality.

Greeting from the Federal Ministry for 
Economic Affairs and Climate Action

Ernst Stöckl-Pukall
Head of Division for 
Digitalisation and Industry 4.0,  
Federal Ministry of Economic  
Affairs and Climate Action 
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Introduction

The application of AI is a key enabler for 
autonomous driving. In the KI Absicherung 
project, AI and safety experts from industry 
and academia develop a methodology for 
a safety argumentation that systematically 
identifies, makes measurable and mitiga-
tes weaknesses of AI functions. The aim is 
to achieve an industrial consensus for a 
methodical approach to assure AI functions 
for the use case of pedestrian detection.

The Project KI Absicherung

Assuring the safety of functions that make 
use of AI-based algorithms is crucial for the 
German automotive industry in international 
competition. In the KI Absicherung project [1], 
a consortium of OEMs, suppliers, technology 
providers and scientific institutions is develo-
ping an „industrial consensus“ on a metho-
dology that can identify and systematically 
mitigate inherent weaknesses in AI functions. 
The methodology also includes a systematic 
approach for deriving a stringent evidence-
based safety argumentation. KI Absicherung 
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Figure 1: Approach to Safety Argumentation for AI-based Functions (© BMW Group | Robert Bosch GmbH | Fraunhofer IAIS | Volkswagen AG)
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is part of the joint projects of the KI Familie. 
Figure 1 shows the specification and develop-
ment steps of an AI function, as well as 
the methodology for building an evidence-
based safety argumentation. This is based 
in particular on safety measures, metrics 
and tests used in the development and 
validation steps of the AI function.
The specification of the AI function is the 
elementary starting point, both for the cons-
truction of the safety argumentation and for 
the development of the function itself. In 
addition to the purely functional requirements, 
such as „recognition of persons on camera 
images“, the specification also includes the 
definition of the scope of use of the function, 
the so-called Operational Design Domain 
(ODD). When using Deep Neural Networks 

(DNN), the ODD specification also results in 
requirements for a systematic and represen-
tative selection of training and test data. The 
KI Absicherung project develops description 
languages and an ontology for the detailed 
specification of data and metadata. These 
are understandable for humans in order to 
be able to build up a comprehensible safety 
argumentation, as well as machine-readable 
in order to be able to carry out data analy-
ses and test evaluations automatically.
DNNs can be understood as complex black box 
approximation functions that are optimized by 
training data. As such, they may have insuffi-
ciencies in the generalization capability, which 
in the unfavorable case can lead to a weakness 
of the software function. In order to syste-
matically address these weaknesses, which 

can in particularly be the cause of functional 
insufficiencies, a list of „DNN-specific safety 
concerns“ has been developed by AI and safety 
experts in KI Absicherung. These must be 
taken into account during the safety 
analysis and appropriate mitigation 
measures must be identified. 
By combining evidences in 
the safety argument it can 
be demonstrated that the 
DNN-specific safety concerns 
are adequately addressed.

The KI Familie

KI Absicherung is part of the KI Familie. The 
KI Familie represents a unique combination 
of projects that are of outstanding import-

ance to Germany‘s industry and research 
landscape. Across the domains, all four 
projects and the interaction between them 

lay the foundation for the success-
ful implementation of artificial 

intelligence for vehicle concepts 
and systems of the future. 
In short: KI Absicherung aims 
to enable the safeguarded use 
of AI in vehicles; in KI Wissen, 
already existing knowledge is 
made available for AI. KI Delta 

Learning increases the learning 
competence of the networks and 

the KI Data Tooling project will provide a holis-
tic database as well as various methods and 
tools for its efficient use in the context of trai-
ning and validation of AI functions in vehicles.
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10:30 Coffee Break

11:00 KI Absicherung: The main results
Fridolin Bauer (BMW Group), Frédérik Blank (Robert 
Bosch GmbH), Dr. Fabian Hüger (Volkswagen AG), 
PD Dr. Michael Mock (Fraunhofer IAIS),  
Andreas Rohatschek (Robert Bosch GmbH),   
Dr. Thomas Stauner (BMW Group)

13:00 Lunch break & interactive poster session

14:00 Poster session

15:10 Parallel presentations
Parallel presentation 1: 
Sensor Fusion for Robust Human Pose Estimation 
Michael Fürst (DFKI)

Agenda

09:30 Welcome and introduction to the event 
Dr. Stephan Scholz (Volkswagen AG)
PD Dr. Michael Mock (Fraunhofer IAIS)

09:40 Welcome by the Federal Ministry for 
Economic Affairs and Climate Action 
Ernst Stöckl-Pukall

09:50 Keynote: The future of mobility - where are we today? 
Wolfgang Müller-Pietralla (Volkswagen AG)

10:15 KI Absicherung: Project overview, 
challenges and results
Dr. Stephan Scholz (Volkswagen AG)
PD Dr. Michael Mock, Fraunhofer IAIS

Parallel presentation 2: 
SegmentMeIfYouCan:  
A Benchmark for Anomaly Segmentation & Entropy 
Maximization and Meta Classification for Out-of-Distri-
bution Detection in Semantic Segmentation.
Svenja Uhlemeyer (Bergische Universität Wuppertal), 
Robin Chan (Bergische Universität Wuppertal)
Parallel presentation 3: 
Testing Deep Learning-based Visual 
Perception for Automated Driving
Dr. Christian Heinzemann (Robert Bosch GmbH)

15:35 Outlook on standardization 
from the perspective of ISO
Prof. Dr. Simon Burton (Fraunhofer IKS)

15:55 Outlook on standardization from the 
perspective of DIN/BSI and Zertifizierte KI
Christine Fuß (DIN), Daniel Lövenich (BSI), 
Dr. Maximilian Poretschkin (Fraunhofer IAIS)

16:15 Coffee Break 

16:45 Podium: from the perspective of the KI Familie
Hans-Jörg Vögel (BMW Group), Dr. Jörg Dietrich (Conti-
nental AG), Amin Hosseini (Mercedes-Benz)

17:30 Wrap-up & Farewell 
Dr. Stephan Scholz (Volkswagen AG) 
PD Dr. Michael Mock (Fraunhofer IAIS)

18:00 End of the event
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Goal & Challenge

KI Absicherung makes the safety of AI-based 
function modules for autonomous driving 
verifiable. An autonomous vehicle must be 
able to perceive its environment and react 
adequately to it. The solutions for such envi-
ronment perception must be able to correctly 
interpret the movements of other road users 
and derive intentions for their continued 
behaviour. In highly automated vehicles, these 
tasks are increasingly performed by artificial 
Intelligence (AI). One of the greatest challenges 
in integrating these technologies in highly 

automated vehicles is to ensure the usual 
functional safety of previous systems. Existing 
and established safety processes cannot simply 
be transferred to machine learning methods.
In the KI Absicherung project, a stringent 
and provable safety argumentation is being 
set up for the first time, with which AI-based 
function modules (AI-modules) can be secu-
red and validated for autonomous driving.

Key Facts Methodological approach

In the KI Absicherung project, methods and 
measures are developed that provide perfor-
mance and safety smetrics. These methods, 
measures and metrics support the general 
safeguarding of an AI function in a car.
On the concrete use case of the 
AI-based perception of pedestrians, 
consensual approaches to the follo-
wing focal points are developed:

• Selection and further development of AI 
algorithms for pedestrian detection with re-
gards to their detection performance against 
the backdrop of their safeguarding capability.

• Development and combination of methods 
and measures to identify and reduce inhe-

rent insufficiencies of the AI modules.

• Stringent development of a safety argumen-
tation and test methodology to prove the 
adequate mitigation of inherent insufficien-
cies of an AI module.

• In-process creation of synthetic training and 
test data sets for the analysis and evalua-
tion of inherent insufficiencies of AI-based 
processes.
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In order to move from the data-driven AI 
function to an assurance case, using the 
example of pedestrian detection to provide 
a stringent argument for demonstrating the 
safeguarding capability of this AI function, the 
following steps are taken (see illustration):

1. Process-accompanying generation of 
synthetic learning, test and validation data

2. Developing methods and measures 
to improve the AI function with 
respect to a wide range of metrics

3. Development and validation of test 
methods for these metrics

4. Stringent safety argumentation for an 
exemplary Operational Design Domain (ODD)

Unique features of the project

In the KI Absicherung project, experts from 
the fields of artificial Intelligence and machine 
learning, functional safety and synthetic 
sensor data generation are working toge-
ther for the first time. In communication with 
standardisation committees and certification 
bodies, the findings gained in the project will 
be used to work towards building an indus-
try consensus on a general AI test strategy.

Dr. Stephan Scholz
Volkswagen AG 
Project coordinator

PD Dr. Michael Mock
Fraunhofer IAIS
Scientific coordinator and consortium co-lead

36 Months
Project runtime:  (01/07/2019 - 30/06/2022)

Facts & Figures

€41 M
Project budget

€19.2 M
Funding budget

24 Project 
Partners
4 external 
technology partners
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Overall Methodology
Assurance of AI-based functions requires a methodoloy that 
can identify and systematically mitigate inherent weaknesses 
in AI functions. The methodology also includes a systematic 
generation of Data for training and testing, definition of 
safety relevant metrics as bases of an approach for deriving 
a stringent evidence-based safety argumentation.

KI-Absicherung: Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Towards Safety Metrics for Automated Driving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Metric Benchmarking Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Synthetic Data Generation based on a modern Game Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Overview of Safe AI Mechanism Landscape and Taxonomy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Data-Driven Engineering /ML Life Cycle | How to derive systematic data requirements? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Physically based synthetic data generation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Pedestrian detector development using the SSD and the KI Absicherung synthetic dataset (synPeDS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Overall m
ethodology of the project

KI-Absicherung: Overall Approach

Stephan Scholz, Volkswagen AG, Michael Mock, Fraunhofer IAIS 
Frédérik Blank, Robert Bosch GmbH, Fabian Hüger, Volkswagen AG 
Andreas Rohatschek, Robert Bosch GmbH, Thomas Stauner, BMW Group

The application of AI is a key enabler for autonomous driving. In the KI Absicherung 
project, AI and safety experts from industry and academia develop a methodology for 
a safety argumentation that systematically identifies, makes measurable and mitigates 
weaknesses of AI functions. The aim is to achieve an industrial consensus for a metho-
dical approach to assure AI functions for the use case of pedestrian detection.
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DNN specific Safety Concern:
Safety-aw

are M
etrics

Towards Safety Metrics  
for Automated Driving

Christian Hellert, Continental AG, Fabian Hüger, Volkswagen AG 
Lydia Gauerhof, Robert Bosch GmbH,  Timo Sämann, Valeo Schalter und Sensoren GmbH 
Dominik Brüggemann, BUW, Christoph Thiem, Opel Automobile GmbH

When deploying an AI function into a safety-critical system, safety metrics 
are required to quantify the remaining risk towards the defined safety goals. 
Thereby, two strategies can be followed to define appropriate safety metrics: 
From technology and from application perspective. We showed how to derive 
safety metrics from technology level, using specified DNN-specific safety 
concerns, and from functional requirements, deduced from system level.

AP3.2 | AP4.2 | AP4.3

Overview of defined DNN-specific safety concerns (© BUW | BMW Group | Robert Bosch GmbH |  

Continental AG | Fraunhofer IAIS | Valeo Schalter und Sensoren GmbH | Volkswagen AG)
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DNN specific Safety Concern:
Safety-aw

are M
etrics

Metric Benchmarking Tool

Christian Hellert, Continental AG 
Christian Brunner, Tom Thielo, Jonas Schneider, Elektronische Fahrwerksysteme GmbH  
Dominik Brüggemann, BUW

The Metric Benchmarking Tool (MBT) is an application to perform standard bench-
marks within the project KI-Absicherung. It is designed to enable and simplify 
evaluations regarding the effectiveness of mechanisms implemented to improve 
pedestrian recognition. The tool uses the KI Absicherung dataset with available 
enriched metadata and 2D bounding box predictions provided in the project specific 
output format to compute a user specified set of object detection metrics.

AP3.2 | AP3.6 

Workflow of the Metric Benchmarking Tool. Blue boxes represent processing modules and orange boxes represent 

data structures (© BUW | Continental AG | Elektronische Fahrwerksysteme GmbH)
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Synthetic Data Generation

Synthetic Data Generation  
based on a modern Game Engine

Markus Huber, Christopher Hauck, Christian Zilliken, Mackevision Medien Design GmbH

Modern game engines are perfectly suitable for synthetic data generation. With custom 
developed modules, the requirements of KI Absicherung data sets such as realism, a 
high degree of variance, varying light and weather conditions, and sensor effects are met 
with systematic data generation. The extensive amount of ground truth data and meta 
annotations allow a wider range of applications in testing and evaluation AI methods.

AP2.1 | AP2.5

Synthetic data generation allows the adaption to different light and weather situations such as clear sky, wetness, or night scenarios (© Mackevision Medien Design GmbH)
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Safe AI M
echanism

 Landscape

Overview of Safe AI Mechanism 
Landscape and Taxonomy

Alexander Hirsch, Stephanie Abrecht, Robert Bosch GmbH 
Gesina Schwalbe, Continental AG

The landscape of Safe AI Mechanisms, which are used to mitigate DNN-specific 
(or broader: AI-specific) Safety Concerns, is extremely diverse. With our work we are 
structuring this landscape by introducing a Safe AI Mechanism Taxonomy. Further we are 
providing a consistent and complete overview of the developed Safe AI Mechanisms in 
KI-Absicherung TP3 including a self evaluation using multiple classification criteria.

AP3.6

Dataset Optimization Robustification Interpretability

Uncertainty AggregationVerification

Architecture Model CompressionMonitoring

Safe AI Mechanisms

Overview of Safe AI Mechanism Taxonomy Domains (© Robert Bosch GmbH)



[ 28 ]  [ 29 ]

M
L Life Cycle M

odel

Data-Driven Engineering / 
ML Life Cycle | How to derive 
systematic data requirements?

Autoren: Andreas Albrecht, Thomas Geipel, Robert Bosch GmbH, Henrik Putzer, fortiss GmbH 
Reviewer: Frédérik Blank, Robert Bosch GmbH, Thomas Stauner, BMW Group 
Timo Dobberphul, Volkswagen AG, Iwo Kurzidem, Fraunhofer IKS

ML models learn their functional behavior implicitely from training data. If relevant 
information is missing the ML model will not learn it. So we need to collect well-struc-
tured and well-balanced data sets that comprehensively cover our problem. Due to 
the open context nature, we propose an iterative Data-Driven Engineering Process / 
ML-LifeCycle Model to systematically derive data requirements and data coverage.

A4.5, P1
Data-Driven Engineering Process & ML-LifeCycle Model that incorporates ML workflows and 

ML Test Strategy and maps to existing process standards (e.g. ASPICE) (© Robert Bosch GmbH) 
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Synthetic DataPhysically based synthetic 
data generation pipeline

Karl Leiss, BIT Technology Solutions, Johannes Günther, Intel Corporation  
Anja Kleinke, Valeo Schalter und Sensoren GmbH, Marzena Franeck, Robert Bosch GmbH

Synthetic data is a scalable and flexible solution to systematically train & test 
AI based systems. A brand new glTF based pipline with exchangeable modules 
was developed to increase transferability of synthetic to real data. Apart from a 
3D object and scenario management, automized scenario generation, physical 
sensor and material effects were incorporated. In the project this new pipeline 
was used to generate virtual scenarios along with labels and meta data. 

AP2.1

Raytracing generated synthetic image with procedural sun and physical sensor effects (© Robert Bosch GmbH 

| BIT Technology Solutions | Intel Corporation | Valeo Schalter und Sensoren GmbH)
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Pedestrian detector developm
ent using the SSD

Pedestrian detector development 
using the SSD and the KI Absicherung 
synthetic dataset (synPeDS)

Patrick Feifel, Philipp Heidenreich, Opel Automobile GmbH 
Frédérik Blank, Simon Heming, Robert Bosch GmbH

The goal of this result is to provide a reference implementation for camera-only 2D 
bounding box pedestrian detection. To this end, the SSD has been selected as a  
traditional single-stage object detector using anchor boxes. To develop the SSD with the 
synPeDS dataset, we describe the necessary adaptions, including strategies to deal with 
many small and occluded pedestrians and the evaluation using safety-aware metrics.

AP1.3

Example SSD inference result of r4 (Mackevision Medien Design GmbH Seq84) (© Mackevision Medien Design GmbH | Opel Automobile GmbH)



Data structuring and analysis

[ 34 ]  [ 35 ]

Synthetic Dataset for Pedestrian Detection (synPeDS) - Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Using Ontologies in Automotive AI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Methodology of Creating an Ontology for Dataset Engineering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Automated Corner Case Detection Pipeline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Enriched metadata in KI-Absicherung synthetic dataset (synPeDS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Motion Capture & Material Measurements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Lessons Learned on Synthetic Data Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Data structuring and analysis
Approaches to systematically and where possible semantically 
describe and analyze the data input space are covered within 
this cluster. This includes the development of an ontology-
based description language enabling concretizing the ODD and 
performing possible data coverage analyses as well as allows 
to deliver enriched metadata for performing in-depth data-
analyses. Moreover, characteristics of the dataset generated in KI 
Absicherung and of the generation process itself are introduced.
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Dataset

Synthetic Dataset for Pedestrian 
Detection (synPeDS) - Overview

Bastian Knerr, QualityMinds GmbH 
Thomas Stauner, BMW Group 
Frédérik Blank, Robert Bosch GmbH 
Michael Fürst, DFKI 
Philipp Heidenreich, Opel Automobile GmbH

This synthetic dataset (video & LiDar) is aimed at being used for training, testing and 
assurance of ML-based pedestrian detection algorithms. It‘s vast amount of ground 
truth and metadata enables in-depth data, sensitivity and correlation analyses.

TP2 with TP1+P1, AP4.1

Groundtruth and meta-information for synthetic dataset (© Mackevision Medien Design GmbH | Robert Bosch GmbH | QualityMinds GmbH)
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Ontology | Data Structuring

Using Ontologies in  
Automotive AI Applications

Christian Witt, Valeo Schalter und Sensoren GmbH 
Martin Herrmann, Christian Heinzemann, Frédérik Blank, Robert Bosch GmbH 
Frank Bonarens, Opel Automobile GmbH

Basis of a robust safety strategy for an automated driving function based on neural 
networks is a detailed description of its input domain. Ontologies fulfill the task to gather 
expert knowledge and model information to enable computer aided processing, while using 
a notion understandable for humans. We leveraged the KI-Absicherung ontology to define 
the operational design domain, to develop tools for structured data generation, to describe 
assets and metadata, and to analyze input domain coverage and DNN performance.

AP4.1

NCAP-like scenario “pedestrian crosses road between parked vehicles” generated by our tool for structured data generation and based 

on KI-Absicherung ontology (© Valeo Schalter und Sensoren GmbH | Mackevision Medien Design GmbH| Bosch)
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Ontology | Data Structuring

Methodology of Creating an  
Ontology for Dataset Engineering

Christian Witt, Valeo Schalter und Sensoren GmbH 
Martin Herrmann, Christian Heinzemann, Frédérik Blank, Robert Bosch GmbH

Basis of a robust safety strategy for an automated driving function based on neural 
networks is a detailed description of its input domain. Ontologies fulfill the task 
to gather expert knowledge and enable computer aided processing, while being 
understandable for humans. We developed and applied a methodology to create 
our ontology based on a domain analysis with a manifold of sources, followed by 
structuring, consolidation, refinement and review steps. The resulting KI-Absiche-
rung ontology serves as a single point for meta data and semantic information.

AP4.1

Methodology to develop the KI-Absicherung ontology with different manual and automated steps and applied use cases (© Robert Bosch GmbH)
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Corner Case Detection

Automated Corner  
Case Detection Pipeline

Namrata Gurung, Niels Heller, QualityMinds GmbH

A method for the identification and characterization of corner cases was developed. 
Applying this to the KI-A dataset, a total of eight selection rules were found, each based on 
a distinct performance inhibiting feature, which could be categorized under quantitative, 
perceptual, and situational inhibitors. Several data visualization tools were developed, 
including a tool that calculates the similarity of any given instance to the rest of the data.

AP2.2

The phase iteration model (© QualityMinds GmbH)
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Enriched m
etadata &

 Safety-aw
are m

etrics

Enriched metadata in KI-Absicherung 
synthetic dataset (synPeDS)

Frédérik Blank, Falko Matern, Robert Bosch GmbH 
Philipp Heidenreich, Opel Automobile GmbH, Michael Fürst, DFKI 
Markus Huber, Mackevision Medien Design GmbH, Thomas Stauner, BMW Group

Based on the collaborative work of AI, data and safety experts in KI Absicherung,
the project‘s synthetic pedestrian dataset was highly enriched by 
adding more than 50 metadata variables valuable to:
• Evaluate DNN-performance based on safety-related criteria (safety-aware metrics)
• Search and cluster images by specific search criteria for (statistical) image analysis
• Define specific training or test datasets
• Link images and object / pedestrian instances to the ontology
This metadata was then used by several partners to develop their own project results. . 
P1 | AP4.1

Bird-eye view with enriched metadata and safety-related evaluation zones and pedestrian classifications

(© Robert Bosch GmbH, Mackevision Medien Design GmbH)
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M
easurem

ent Data

Motion Capture & Material Measurements

Markus Bartnick, Markus Huber, Mackevision Medien Design GmbH 
Johannes Günther, Intel Corporation 

Synthetic data generation with a high degree of realism and accuracy requires the measu-
rement of key scene elements such as pedestrian motion and material characteristics. 
The captured skeletal motion of several persons and their interaction with objects was 
transferred to 3D character models („retargeting“). Cloth and infrastructural materials were 
scanned by an X-Rite TAC7 scanner, processed and available in AxF and glTF file format.

AP2.5

Top row: One of 90 captured pedestrian animations. Bottom row: Five examples of 80 measured material samples (© Mackevision Medien Design GmbH| Intel Corporation )
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Perform
ance lim

iting factor

Lessons Learned on  
Synthetic Data Generation

Nicolas Gay, Maximiliano Cuevas, Ulrich Wurstbauer, Luxoft 
Thomas Stauner, BMW Group 
Oliver Grau, Korbinian Hagn, Intel Corporation  
Falko Matern, Robert Bosch GmbH

The synthetic data generation process and the utilisation of such data for 
training and evaluation of AI models involves four well-defined stages:
data specification, data production, data analysis and its usage in a real-world 
application. We summarise some of the lessons learned along the process. 

AP2.4

Synthetic scenario and its corresponding semantic segmentation ground truth produced during the synthetic data generation process (© BIT Technology Solutions)
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Method related  
Evidence Workstreams
The method-related Evidence Workstreams cover the DNN-
specific safety concerns about uncertainty, robustness, plausibility 
and explainability. In the following, the contributions show 
mechanisms to mitigate the safety concerns and describe related 
test approaches. Furthermore, aspects regarding the safety 
argumentation and determined evidence are described.
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DNN specific Safety Concern:
Unreliable Confidence Inform

ation

Non-Parametric Uncertainty  
Optimization for Bounding Box Regression

Joachim Sicking, Maximilian Pintz, Maram Akila, Fraunhofer IAIS

We propose Wasserstein dropout, an uncertainty estimator for regression tasks. 
It adjusts the widths of (dropout-based) sub-network distributions to match 
the local data uncertainty. Empirical analysis shows that it is on par with state-
of-the-art methods and outperforms them in terms of consistency and robust-
ness w.r.t. domain shift. Experiments indicate that such properties carry over 
to object detect when compared to (vanilla) MC Dropout estimation.

AP3.3

From toy experiments (upper left, showing widths of ensembles) over 1D regression (lower left) 

to object detection (r.h.s) including out-of-domain experiments (lower right), (© Fraunhofer IAIS | KIT)
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Perform
ance lim

iting factors

Semantic Testing of DNNs  
with Proxy Models

Sujan Gannamaneni, Maram Akila, Fraunhofer IAIS

Our „Semantic Testing“ approach evaluates DNNs along semantic dimen-
sions to uncover learnt weaknesses. In contrast to using aggregated metrics, our 
method enables more granular testing. In addition to identifying several weak-
nesses, we also evaluate whether the impact of semantic dimensions is indepen-
dent or not. We perform this by the functional decomposition of observations 
using marginals of the data distributions, which acts as a simple proxy model.

AP4.4

Semantic tests uncover weaknesses in DNNs, and Proxy models uncover independence of the impact of semantic dimensions. (© Fraunhofer IAIS)
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DNN specific Safety Concern:
Unreliable Confidence Inform

ation

Multivariate Confidence  
Calibration for Object Detection

Fabian Küppers, Hochschule Ruhr West 
Anselm Haselhoff, Hochschule Ruhr West

For each detection, a neural network estimates its belief about the correctness. 
However, these estimates are known to be too overconfident, i.e., they are misca-
librated. We extend common calibration methods to include additional box infor-
mation into calibration. These methods are trained and evaluated on the TP1 
KI-A SSD predictions using the KI-A data sets. We found an underconfidence of 
the examined network which is successfully recalibrated by our methods.

AP3.5

Position-dependent miscalibration of the TP1 KI-A SSD before calibration  (© Hochschule Ruhr West)
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DNN specific Safety Concern:
Unreliable Confidence Inform

ation

Gradient-Based Uncertainty  
Estimation for Deep Object Detection

Tobias Riedlinger, Matthias Rottmann, Hanno Gottschalk, Bergische Universität Wuppertal

Common methods for quantifying prediction uncertainty tend to be based on 
sampling the network output. We introduce gradient-based instance-wise uncer-
tainty measures for object detection refering to model parameters. We compare 
intrinsic network confidence to output- and gradient-based confidence estimates on 
the TP1 KI-A SSD architecture using TP2 data. A combination of output- and gradient-
based uncertainty metrics yields the most accurate confidence estimation.

AP3.4

Comparison of network-intrinsic („Score“, top) and gradient-based confidence estimation (bottom) in a real-world street scene from the KITTI dataset (© BUW + KIT)
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Dataset QialityCoverage Guided Fuzz Testing 
Framework & Dataset Quality Metrics

Vivek Vekariya, Mojdeh Golagha, fortiss GmbH

The trustworthiness of the reported KPIs of DNN lies in the quality of its test 
dataset. We propose the test dataset quality metrics to infer various aspects inclu-
ding the latent space coverage of the DNN under test. We also use the coverage 
guided fuzz testing to sample the additional test data points. The performance 
of various DNNs can be compared using our testing framework. Also, the data 
points sampled using fuzzing help to maximize the latent space coverage.

AP4.4

A framework to evaluate the dataset quality and maximize the latent space coverage using fuzz test generation (© Fortiss GmbH | BIT Technology Solutions)
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DNN specific Safety Concern:
Brittleness of DNNs

Evidence Workstream: Analysis  
and Improvement of DNN Robustness

Thomas Schulik, ZF Friedrichshafen AG 
Markus Bach, Valeo Schalter und Sensoren GmbH

The robustness of DNNs used for automotive perception systems is a crucial 
requirement for the deployment of such algorithms. Therefore, different mecha-
nisms for robustness assessment and robustification are developed. Both of these 
tasks use data augmentation techniques that add natural perturbations or adver-
sarial attacks to camera images. To obtain safety evidences, the performance in 
the form of the mAP metric is compared for different models and test datasets.

AP3.3 | AP3.5 | AP4.3 | AP4.4 | AP4.5

Main aspects of the Evidence Workstream (© ZF Friedrichshafen AG | BIT Technology Solutions)
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DNN specific Safety Concern:
Brittleness of DNNs

AugMix: Improving Robustness 
via Data Augmentation

Nikhil Kapoor, Serin Varghese, CARIAD 
Fabian Hüger, Volkswagen AG

Data augmentation is a powerful technique of achieving robustness and improved gene-
ralization on unseen data. AugMix is a state-of-the-art data augmentation technique that 
helps improve model robustness. It combines several augmentations that are sampled 
stochastically and layered together to produce high diversity of augmented images. The 
method helps improve model generalization on unseen data and cope with corner cases.

AP3.3 

High-level overview of training and evaluation setup of AugMix (© Volkswagen AG | BIT Technology Solutions)
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DNN specific Safety Concern:
Incom

prehensible Behavior

Visual Exploration and Semantic  
Analysis of DNN Weaknesses with ScrutinAI

Elena Haedecke, Michael Mock, Fraunhofer IAIS

The interactive tool ScrutinAI is a visual analytics approach for the semantic 
analysis of DNN outputs. It supports analysts and/or auditors in utilizing their 
semantic knowledge to identify the causes of incorrect predictions by enabling 
a visual exploration of systematic DNN weaknesses. The method addresses 
the safety concern incomprehensible behavior. Insights gained support model 
improvement and foster a safety argumentation for AI applications.

AP3.6

ScrutinAI supports the visual exploration of DNN predictions by various interlinked widgets  (© Fraunhofer IAIS | Mackvision)
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DNN specific Safety Concern:
Incom

prehensible Behavior and Insufficient Plausibility

Evidence Work Stream: Incomprehensible 
Behavior and Insufficient Plausibility

Martin Schels, Gesina Schwalbe, Continental AG 
Esra Acar-Celik, Tianming Qiu, fortiss GmbH 
Elena Haedecke, Michael Mock, Fraunhofer IAIS

In this poster, EWS-3, which revolves around the safety concerns „Incom-
prehensible Behavior and Insufficient Plausibility“ are introduced. We 
investigate 3 different TP3 methods that line up for this task:
• Concept embedding and hybrid learning (Continental AG)
• Visual analytics (Fraunhofer IAIS)
• Attention based heatmaps (fortiss)
We show corresponding GSN fragments and also how to bridge the gap 
between data driven development and our safety argumentation.

AP4.3
Contributions to EWS-3 (© BIT Technology Solutions | fortiss GmbH | Continental AG)
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DNN specific Safety Concern:
Incom

prehensible Behavior

Using concept wce

Gesina Schwalbe, Martin Schels, Continental AG

Our approach optimizes prior work for associating a semantic concept (e.g. „arm“) 
with vectors (CAVs) in the DNN latent space. For a layer a small linear concept 
model (CM) is trained to predict presence of the concept from an activation map 
pixel in the layer output. The CM weights are the CAV. Several CM-based verifi-
cation applications are investigated: Verify internal representation of concepts, 
inspect internal logic, and check compliance with fuzzy logic rules.

AP3.3 | AP3.4

"head" at …main task

= upscalingsigmoid
⋅ 𝑤𝑤𝑐𝑐 + 𝑏𝑏𝑐𝑐

ground truthfor 𝑐𝑐= "head" prediction
Concept analysis approach (© Continental AG)
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Input Coverage Analysis using Domain Models and Combinatorial Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Data related  
Evidence Workstreams
The data-related Evidence Workstreams cover the data related safety 
concern of inadequate data distribution as well as performance 
limiting factors. Therefore, the contributions presented in the 
following address coverage of the ODD and systematic analysis 
of the elements of the domain model on DNN performance.
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DNN specific Safety Concern:
Data distribution is not a good approxim

ation of the real w
orld 

Input Coverage Analysis using  
Domain Models and Combinatorial Testing

Christian Heinzemann, Martin Herrmann, Frédérik Blank, Lydia Gauerhof, Robert Bosch GmbH

Input coverage uses a domain model describing semantic features of input images 
of a DNN and argues coverage of a training or test dataset with respect to this 
domain model. Due to the usually high number of semantic features, a full explo-
ration of a domain model is prohibitive. Therefore, we leverage combinatorial 
testing techniques for defining a weaker notion of coverage for dataset analysis 
that provides better scalability. We conducted an experiment indicating a rela-
tionship between low sample count of features and low DNN performance.

AP4.4. | AP4.1 | AP4.3 | P1

Input coverage for training data set in Mackevision Medien Design GmbH tranches #4, #5, and #6 on single parameters. Missing parameter 

values (marked by red font color) for n=1 result in even more missing value pairs for n=2 (© Robert Bosch GmbH)
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DNN specific Safety Concern:
Unknow

n behavior in rare critical situations

ENCAP Standard oriented scenarios 
for DNN performance evaluation

Thomas Schulik, ZF Friedrichshafen AG 
Michael Schuldes, FKA GmbH 
Martin Herrmann, Frédérik Blank, Robert Bosch GmbH 
Markus Huber, Mackevision Medien Design GmbH

The performance assessment within standardized scenarios like in the ENCAP 
specification is crucial and important step for the homologation of AD systems 
in future. For an efficient scenario definition and data production a semi-auto-
mated process with a machine-readable format was evolved. The evaluation has 
shown that the pedestrian pose, bounding box aspect ratio and contrast has a 
strong impact on the detection performance of the DNN (SSD) under test.

AP2.5 | AP4.1 | AP4.4 | P1
1. Overall process for test set defintion and parameter variation

2. Efficient pose selection from pestrian animation and realization of machine readable format (© ZF Friedrichshafen AG | Robert Bosch GmbH | Mackevision Medien Design GmbH)
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Contrast, occlusion, and pose of pedestrians

Applying Image Analysis,  
Combinatorial and Search-based 
Testing for DNN-Verification

Christoph Gladisch, Falko Matern, Frédérik Blank, Martin Herrmann, Simon Heming, Robert Bosch GmbH

Rigorous and systematic testing of AI requires new approaches focusing on data. 
Our approach is to extract information in form of ontology parameters (a.k.a. 
dimensions) from a labelled image dataset and from the DNNs predictions and 
to use a collection of black-box testing and analysis techniques. As experiments, 
we applied search-based testing, combinatorial testing, image analysis, distribu-
tion and correlation analysis, and structured image generation techniques.

AP4.4 | AP4.1 | AP2.4 | AP1.2 | P1

A schema of a verification loop to test a perception function consisting of image analysis and testing approaches 

like combinatorial and search-based testing (© Robert Bosch GmbH, Mackevision)
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Perform
ance Lim

iting Factors

Performance Limiting Factors  
(PLFs) Data-related evidence Workstream

Frédérik Blank, Lydia Gauerhof, Christoph Gladisch, Falko Matern, Robert Bosch GmbH 
Oliver Grau, Korbinian Hagn, Intel Corporation  
Iwo Kurzidem, Fraunhofer IKS

Performance Limiting Factors are measurable factors, either of a direct physical 
or a model of an effect that leads to drops in perception performance. The argu-
mentation provides evidence to identify and mitigate PLFs: Usage of a-priori know-
ledge about physical and technical system context and methods to identify 
PLFs. Mitigation includes: Retraining with updated dataset, Possible compo-
nent modifications and by different component(s) on system-level.

AP1.2 | AP2.4 | AP4.3 | AP4.4 | P1

Schematic overview of the GSN safety argumentation for PLF mitigation (© Robert Bosch GmbH, FhG IKS) 

Goal: G1

Known Performance Limiting Factors (PLFs)
are sufficiently mitigated

Context: C1.1

Content PLFs are physically measurable
factors which very likely significantly
reduce the DNN detection performance
or confidence

https://confluence.vdali.de/pages/vie...A

Assumption: A1.1

Content Labeling specification is
assumed to be satisfied

Strategy: S1

PLFs have been identified and
mitigated against

Goal: G1.1/Safety_Contract_ACP2.1

PLFs are sufficiently well identified

ai_component.gsn#Safety_Contract_ACP2.1

Goal: G1.2/Safety_Contract_ACP2.2

PLFs negatively impacting the performance
are sufficiently mitigated

ai_component.gsn#Safety_Contract_ACP2.2

Strategy: S2

Analysis of PLFs that negatively
influence DNN performance

Strategy: S3

Causes of PLFs are mitigated
against at the appropriate level

Context: C1.1.1

For all identified PLFs the Dimension
(e.g. Contrast) with its corresponding
Alternatives (e.g. low, medium, high)
are documented (added, extended) in
the ontology

https://confluence.vdali.de/display/KI...

Goal: G1.1.1

Potential PLF Dimensions are identified

Goal: G1.1.2

Iterative refinement of PLFs Alternatives
Goal: G1.2.1

The component (pre, post-processing, DNN
and potentially further measures) achieves
sufficient performance for correspondent PLFs

Goal: G1.2.2

Correspondent PLFs are monitored

Goal: G1.2.3

Correspondent PLFs are mitigated on system
level

Context: C1.1.2.1

Results of G1.1.1 are used to
conduct these experiments

Context: C1.1.2.2

Relevant performance indicator
w.r.t. PLFs Alternatives are
defined (IoU, uncertainty score)

Context: C1.1.2

Further argumentation on the fidelity of
data

https://confluence.vdali.de/downloa...

Context: C1.2.1

Identified PLFs are included in
assurance datasets (e.g. NCAP-like
dataset) to prove sufficient mitigation

Context: C1.2.2.1

Monitored PLFs are mitigated,
e.g. by G1.2.3

Solution: Sn1.1.1.1

Documentation of a-priori
knowlege about physical
and technical system
context to identify PLFs

https://confluence.vdali....

Solution: Sn1.1.1.2

PLFs are extracted
considering Synthetic Data
(Intel) and the Real World
Cityscapes/Cityperson
dataset via Principle
Component Analysis

https://confluence.vdali....

Solution: Sn1.1.1.3

Unexplainable anomalies
identified in G1.1.2 are
analyzed w.r.t. potentailly
new PLFs

Solution: Sn1.1.2.1

Combinatorial Testing to
determine PLF Dimension
and Alternatives
distribution discrepancies
in datasets (e.g. training,
validation) to find specific
PLFs

https://confluence.vdali....

Solution: Sn1.1.2.2

Determine where the DNN
performs bad, e.g via
Search-Based Testing (SBT),
revealing PLFs

https://confluence.vdali....

Solution: Sn1.1.2.3

Combinatorial testing of
PLF Alternatives to find
combinations with low
DNN performance via
relevant performance
indicators

https://confluence.vdali....

Solution: Sn1.2.2.1

Suitable monitor(s) for
PLFs are in place

Solution: Sn1.2.3.1

PLFs are mitigated by
different component(s) in
the system (e.g. sensors,
trajectory planning,
degradation)

P3.B: Overall System Arch...

Solution: Sn1.2.1.1

Retraining with updated
dataset 

https://confluence.vdali....

Solution: Sn1.2.1.2

Possible component
modifications (but not
limited to): loss function,
architecture, initial
parameters, TP3 methods

Goal: G1.2.4

All identified PLFs are sufficiently mitigated
in collectivity
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Autom
ated AI Validation

Automated AI Validation using  
deep variational data synthesis

Korbinian Hagn, Oliver Grau, Intel Corporation 

Automating AI validation through variational data synthesis enables detec-
tion of flaws in the DNN predictions. By generation and synthetization of 
highly parameterizable inner-city street scenes and a realistic sensor simu-
lation, detection errors are spotted by the VALERIE flow control.

AP2.1 | AP2.4 | AP4.4

VALERIE detects perception faults like missed pedestrian detections (red) in a scene through variations of the scene parameters, e.g., the sun position (© Intel Corporation )
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Methods & Measures
This section presents selected methods and measures 
from KI Absicherung that systematically determine and 
reduce inherent insufficiencies of AI functions. These 
mechanisms are examined and evaluated with respect to their 
significance in terms of safety and their effectiveness.
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DNN specific Safety Concern:
Lack of generalization

Improving Predictive Performance 
and Calibration by Weight Fusion 
in Semantic Segmentation

Timo Sämann, Valeo Schalter und Sensoren GmbH 
Ahmed Hammam, Opel Automobile GmbH, Andrei Bursuc, Valeo.ai 
Christoph Stiller, Karlsruhe Institute of Technology, Horst-Michael Groß, Ilmenau University of Technology

Contributions:
(i) Our weight fusion method improves predictive performance and calibration without 
impacting runtime cost. (ii) We introduce a new testing method that can measure 
the functional space between weights, called oracle testing. (iii) We show the super-
iority of our approach in a comparison with Stochastic Weight Averarging (SWA) and 
deep ensembles for in-distribution as well as for out-of-distribution data (ACDC).

AP3.6 | AP3.4
PyTorch code snippet of our weight fusion approach (© Valeo Schalter und Sensoren GmbH)
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DNN specific Safety Concern:
Incom

prehensible Behavior

Insights into CNN Decision-Making via 
Embedded Sparse Mixture-of-Expert Layers

Svetlana Pavlitskaya, Christian Hubschneider, Michael Weber, J. Marius Zöllner,  
FZI Forschungszentrum Informatik 
Lukas Struppek, Karlsruher Institut für Technologie (KIT)

parsely-gated mixtures of experts (MoEs), embedded directly into the CNN layers, 
allow for end-to-end training without explicit dataset splits. We propose con-
straints to balance expert utilization during training and thus to control the trade-
off between model performance and expert specialization. Embedded MoEs 
can provide additional insights into the decision-making process of CNNs, as 
experts can implicitly focus on individual sub-domains of the input space.

AP3.6 

Assignment of input samples to specific experts in the MoE embedded into the last ResNet block of ResNet-18 

for image classification on CIFAR-100 (© FZI Forschungszentrum Informatik)

Expert 1 Expert 2 Expert 3 Expert 4
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DNN specific Safety Concern:
Incom

prehensible behavior

Morphological aggregation of  
heatmaps with Wasserstein k-means

Gregor Richter, Alicia jimenez Herrera, Sabine Hug, umlaut 
Dennis Herbik, ehemals umlaut

Saliency maps allow highlighting prediction relevant input features thus explai-
ning individual predictions. We extend the saliency map Layer-wise Relevance 
Propagation (LRP) to object detection. Heatmaps generated via LRP are local, 
hence we consider aggregation by morphological clustering in order to reduce 
the complexity of the derived dataset of explanations. Yet, limitations of saliency 
map evaluation metrics make the benefit to a safety argumentation unclear.

AP3.1

General workflow for aggregating heatmaps (© umlaut)
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DNN specific Safety Concern:
Unreliable Confidence Inform

ation

Out-of-Distribution Detection 
in Semantic Segmentation

Robin Chan, Svenja Uhlemeyer, Matthias Rottmann, Hanno Gottschalk, University of Wuppertal

Objects from unknown classes are also considered as „out-of-distribution“ (OoD) 
examples and their detection is extremely safety-relevant in many real-world 
applications, particularly in high-stakes applications like automated driving. In 
this work, we approach OoD detection in semantic segmentation. We present 
a method that achieves significant OoD detection improvements while sacri-
ficing only marginally in original semantic segmentation performance.

AP3.3

Comparison of OoD predictions with our OoD training approach (bottom row) and without (top row). 

The predictions are obtained by thresholding on the softmax entropy heatmaps (© BUW)
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DNN specific Safety Concern:
Unreliable confidence inform

ation &
 safety-aw

are m
etrics

Analyzing the effect of pruning 
on the robustness of DNNs 

Sven Mantowsky, Firas Mualla, ZF Group

In order for state of the art DNNs to meet the restrictions of embedded systems, 
they need to be compressed while not only keeping their accuracy but also 
maintain their safety requirements.  To evaluate the robustness of models 
after compression in comparison to their baseline, we analyze two diffe-
rent metrics: Heatmap correlation and Expected Calibration Error.  

AP3.3

Heatmap comparison between baseline and HRank-based compressed SSD models (compression rate of 25% and 50%) (© ZF Friedrichshafen AG | Continental AG)
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DNN specific Safety Concern:
Incom

prehensible behavior

Extension of Deep Taylor 
Decomposition to Object Detection

Firas Mualla, ZF Group

The Explainable-AI method Deep Taylor Decomposition (DTD) addresses the safety 
concern incomprehensible behavior. It delivers some insights, as to which pixels contri-
bute to the model‘s decision. Compared to other heatmap methods, it also claims 
kind of theoretical soundness based on Taylor decomposition. We extended the 
method from classification to object detection, namely to the Single Shot Detector 
(SSD). As there is no corresponding ground truth, the evaluation was done based 
on an offline temporal stability analysis. In addition, we examined a possible appli-
cation of the DTD method for the detection of adversarial attacks on SSD.

AP3.4

Extension of Deep Taylor Decomposition (DTD) to object detection. For relu-based networks such as SSD, 

DTD is equivalent to Layerwise Relevance Propagation (LRP) γ-rule when γ approaches infinity (© ZF Friedrichshafen AG | Mackevision Medien Design GmbH)



[ 98 ]  [ 99 ]

DNN specific Safety Concern:
Brittleness of DNNs

Sensor Fusion for Robust Pedestrian 
Detection and Human Pose Estimation

Michael Fürst, DFKI

Precise 3D localization of pedestrians is critical for AVs. However, current camera 
only approaches suffer from depth ambiguity. LiDAR only approaches have perfect 
depth perception, but lack resolution required for reliable long range pede-
strian detection. By adequately fusing information from multiple types of sensors, 
the strengths are combined and weaknesses mitigated. Our work highlights diffe-
rent advantages and shortcomings of Camera, LiDAR and fusion approaches.

AP1.4 | AP1.5

Depth ambiguity leads to the skeletons being far off the ground truth bounding box in RGB only (left). With fusion the error 

is significantly reduced (right) (© 2019 UM & Ford Center for Autonomous Vehicles (FCAV) | DFKI)
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DNN specific Safety Concern:
Inadequat seperation of test and training data

Analysis and Comparison of 
Datasets by Leveraging Data 
Distributions in Latent Spaces

Hanno Stage, Lennart Ries, Eric Sax, FZI Forschungszentrum Informatik

One insufficiency of DNNs is their ability to generalize from given training data. 
To mitigate this, methods for the detection of domain shifts between training 
and validation data are necessary. We showed that latent spaces of VAEs can be 
used find domain shifts between data sets during early development. We inves-
tigated numerous VAEs, distance metrics and exemplary domain shifts, where 
a Joint VAE with a probabilistic distance metric provided best results.

AP3.5

Dtr
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Distance to
Training Data

Distances
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histogram distance
for mval,mdom

Overview of our approach. The encoder of a variational autoencoder (VAE) is used to transform 

data into a latent space and then compare the data to detect domain shifts (© FZI Forschungszentrum Informatik)
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Lack of EfficiencySelf-compressing online pruning

Konstantin Ditschnuneit, Johannes Otterbach, Merantix Momentum GmbH

State-of-the-art semantic segmentation models are characterized by high para-
meter counts and slow inference times, making them unsuitable for deployment in 
resource-constrained environments - such as within autonomous driving vehicles.
The proposed algorithm predictably prunes models to a given performance or 
minimum inference speed. Thus allowing the user to prune models up to the 
exact inference speed required for the given task and available hardware.

AP3.3

Correlation between pruned convolution kernels, inference time per batch and mean IoU on the validation split  (© Merantix Momentum GmbH)
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Perform
ance lim

iting factors 

DNN Performance  
Limiting Factors Analysis 

Yasin Bayzidi, Alen Smajic, Volkswagen AG

Deep Neural Networks might face challenging situations that hinder their detec-
tion performance. Recognizing such situations in a systematic way would help to 
recognize the factors that contribute to their mis-behaviour. To do so, 23 perfor-
mance limiting factors are extracted from two data-sets and analyzed throug-
hout six pedestrian detection models. The factors are categorized into two 
categories based on color and texture or geometrical properties.  

AP2.2

The object occlusion rate correlation with the FasterRCNN Recall combined with the histogram of the occlusion rates throughout the CityPersons data-set (© Volkswagen AG)
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Safety & Testing
This section discusses contributions to an evidence-based 
safety argumentation in order to support a convincing safety 
assurance case for the ML-based pedestrian detection. 
Moreover, it showcases test and analysis methods that can be 
used to generate evidences and puts them into context.
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DNN specific Safety Concern:
Unreliable Confidence / Brittleness

Perspectives on Safety: 
Estimating and Proving

Tom Thielo, Christian Brunner, Kai Fabi, Jonas Schneider, Elektronische Fahrwerksysteme GmbH 

To deploy a deep neural network in a safety critical application, it is crucial 
to verify its intended behavior. By applying approximated variance propaga-
tion for real-time uncertainty estimation, we uncover unknown unsafe scenarios 
during development and operation by live monitoring. Additionally, before relea-
sing an AI model, we derive guarantees for known scenarios by proving the robust-
ness of the models predictions, e.g., against photometric transformations.

AP3.4 | AP3.5

The neural network is certain in its prediction, but not robust under transformations. (© EFS GmbH  | Mackevision Medien Design GmbH)
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DNN specific Safety Concern:
Real-W

orld Data Distribution

Safety Case Patterns for the 
Argumentation of a Sufficient Database

Markus Bach, Valeo Schalter und Sensoren GmbH 
Christian Hellert, Continental AG 
Lukas Bergmann, Volkswagen AG 
Christian Pfister, Automotive Safety Technologies

The database has an essential influence on the development and evaluation of DNNs. 
Consequently, the safety argumentation must include evidences for a sufficient database 
for the intended functionality. In this context, three main data properties were identi-
fied: representativity, fidelity and accurateness. We have created a Safety Case Pattern 
for each property and instantiated it in the context of the KI Absicherung use case.

AP4.3

Overview of identified Data Properties – Representativity, Fidelity and Accurateness (© Continental AG)
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STPA based Safety Life Cycle

Elicitation of Machine Learning 
Safety Requirements via STPA 

Stefan Bläsius, Fridolin Bauer, BMW Group, Esra Acar-Celik, fortiss GmbH 
Christian Pfister, Automotive Safety Technologies, Martin Schels, Continental AG 
Markus Bach, Valeo Schalter und Sensoren GmbH, Lukas Bergmann, Volkswagen AG  
Asim Abdulkhaleq, Shervin Raafatnia, Robert Bosch GmbH

We present our experience with applying System-Theoretic Process Analysis (STPA) 
to a Machine Learning (ML) based pedestrian collision avoidance system. STPA 
is integrated into the safety life cycle of functional safety (ISO 26262) comple-
mented with Safety of the intended Functionality (ISO/PAS 21448) in order to elicit 
safety requirements. The requirements are derived using DNN-specific Safety 
Concerns and Performance Limiting Factors in ML specific Loss Scenarios.

AP4.2
Workflow of the STPA based approach for the elicitation of Machine Learning Safety Requirements  

(© BMW Group | fortiss GmbH | Automotive Safety Technologies | Continental AG | Valeo Schalter und Sensoren GmbH | Volkswagen AG | Robert Bosch GmbH)
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Structure of the Assurance Case

Safety Argumentation Structure and 
Safety Requirements for the AI Function

Christian Pfister, Automotive Safety Technologies, Martin Schels, Continental AG 
Esra Acar-Celik, fortiss GmbH, Markus Bach, Valeo Schalter und Sensoren GmbH, Stefan Bläsius, BMW Group 
Iwo Kurzidem, Fraunhofer IKS, Lukas Bergmann, Volkswagen AG, Lydia Gauerhof, Robert Bosch GmbH

AP4.2 aims at arguing the safety of a system using a Deep Neural Network 
(DNN) for pedestrian detection down to the level of the AI function. Important 
blocks are the residual risk considerations, the elicitation of meaningful requi-
rements along with suitable metrics and the definition of safety contracts. 
All these tasks are non-trivial when using machine learning and DNNs.

AP4.2

Overview of AP4.2 and contributions to the Assurance Case (© Continental  AG | Robert Bosch GmbH | Automotive Safety Technologies)
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All provided evidenes are integrated

Evidence-based Safety Argumentation: 
Approach and Organizational Setup

Andreas Rohatschek, Robert Bosch GmbH 
Thomas Schulik, ZF Friedrichshafen AG 
Christian Pfister, Automotive Safety Technologies GmbH

According to the principles of ISO 26262, ISO/DIS 21448, and ISO/TR 4084, the assurance 
case shall state in a convincing way: „The system is safe because...“. The central aspect of 
safety argumentation is to show that the mitigation of insufficiencies was successful. If 
the insufficiency is reduced to an acceptable level, this provides evidence to be used in 
the safety argumentation. This is supported by considering DNN-related safety concerns.

AP4.3

How to create evidences from methods and tests (© Robert Bosch GmbH)
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Safety Argum
entation

Structure of the Overall 
Safety Argumentation

Christian Pfister, Automotive Safety Technologies 
Esra Acar-Celik, fortiss GmbH 
Andreas Rohatschek, Robert Bosch GmbH 
Markus Bach, Valeo Schalter und Sensoren GmbH

The safety argumentation is structured in 2 layers: The overall GSN graph is the top-level 
part. We argue, inside the ODD, over the mitigation of Hazards and their corresponding 
Unsafe Control Actions down to the level of the AI component. Here, we argue over the 
avoidance of Loss Scenarios with corresponding causal factors (e.g. Safety Concerns, Perfor-
mance Limiting Factors), supported by fulfilling the Machine Learning Safety Requirements.

AP4.2 | AP4.3

Overview of the Overall Safety Argumentation (© Automotive Safety Technologies | Valeo Schalter und Sensoren GmbH)
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M
L Test StrategyProposal for a ML Test Strategy

Thomas Stauner, BMW Group 
Andreas Albrecht, Robert Bosch GmbH

The ML test strategy of KI Absicherung consists of a set of recommendations of methods 
to be used for testing of DNN-based object detection functions. It is specified relative 
to the ML-LifeCycle and also addresses verification activities for the dataset.
The activities, their objectives and associated methods are described in the poster. 
For most method classes several concrete methods were developed in the project.

AP4.5

Association of the test strategy with the ML-LifeCycle (© Robert Bosch GmbH)
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