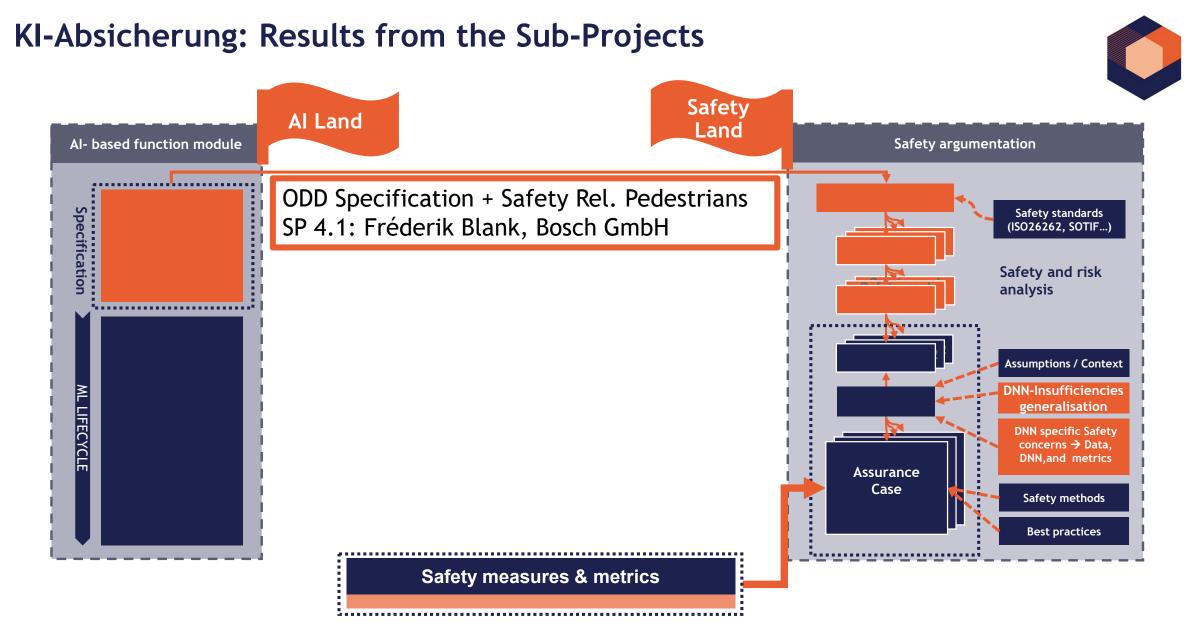


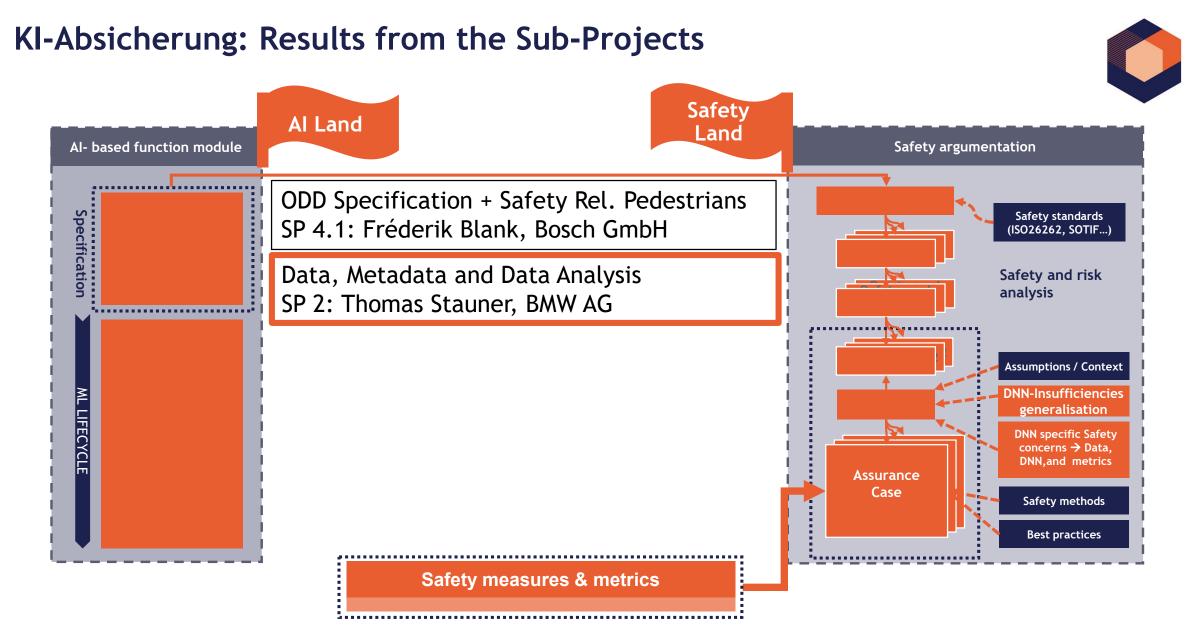
Final Event | June 23rd 2022

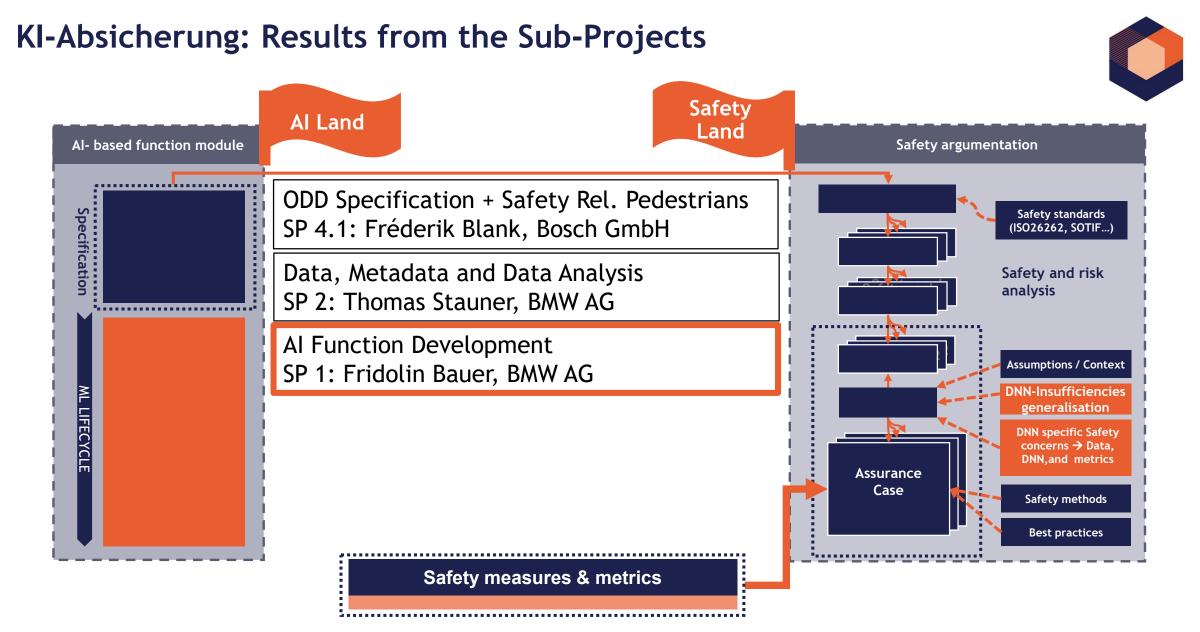
KI Absicherung: Results from the Sub-Projects

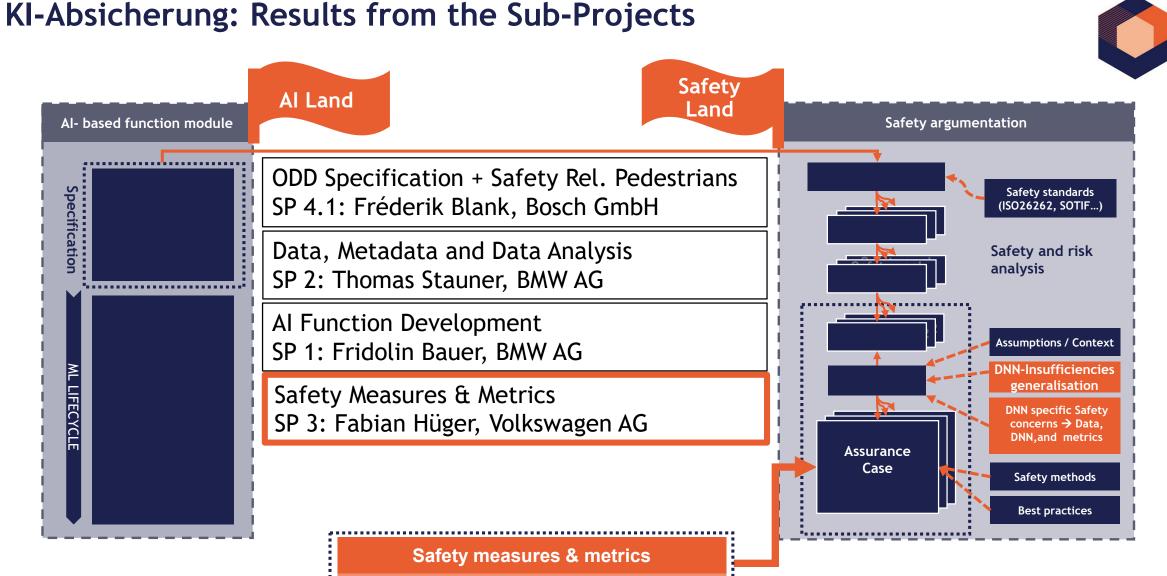
PD Dr. Michael Mock (Fraunhofer IAIS), Frédérik Blank (Robert Bosch GmbH), Dr. Thomas Stauner (BMW AG), Fridolin Bauer (BMW AG), Dr. Fabian Hüger (Volkswagen AG), Andreas Rohatschek (Robert Bosch GmbH)

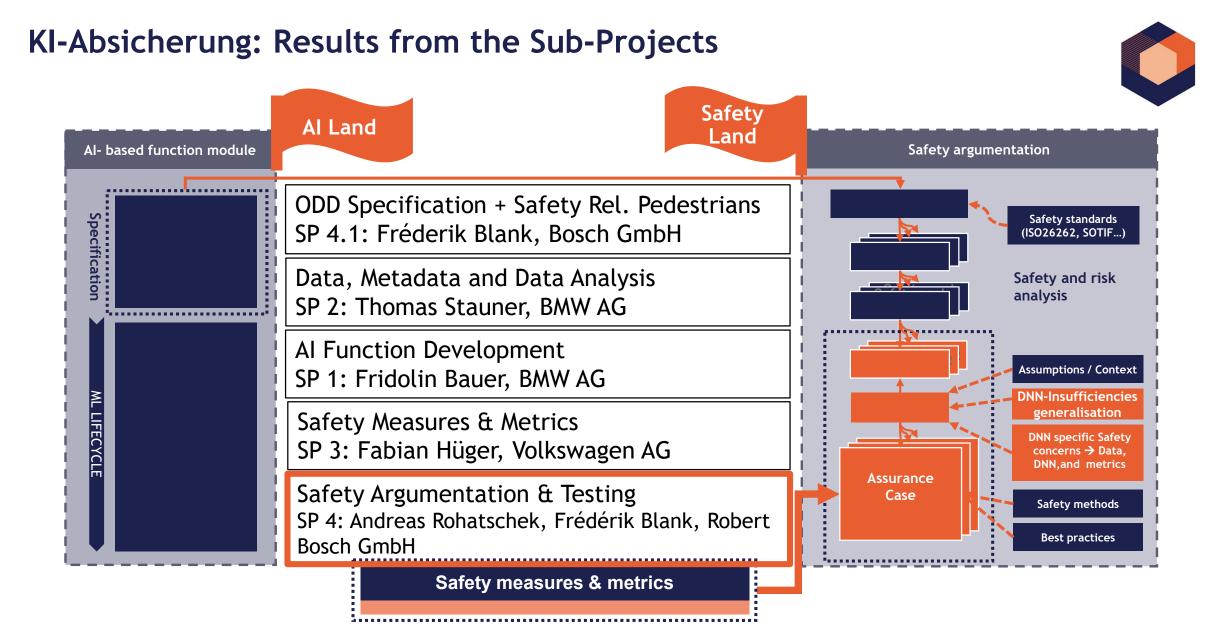
Big Picture Michael Mock, Fraunhofer IAIS











ODD Specification + Safety Rel. Pedestrians SP 4.1: Frédérik Blank, Robert Bosch GmbH

ABSICHERUNG Safa Al far Automated Driving

Safe AI for Automated Driving

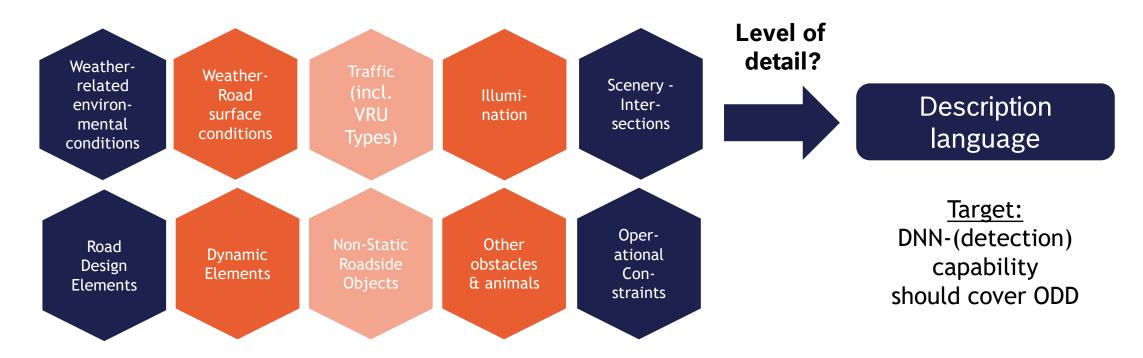
Final Event | June 23rd 2022

Structuring the input Space & Safety-relevant pedestrians (AP4.1/P1)

Frédérik Blank, Robert Bosch GmbH

Structuring the input Space - Operational design domain (ODD)

- An ODD describes / specifies operating conditions under which a given automated driving system or feature is specifically designed to function [...]
 - Taxonomy and Definitions for Terms Related to Driving Automation Systems (examples)



June 23rd, 2022 | KI Absicherung Final Event | Frédérik Blank

A description language & semantic input space modeling is needed to...

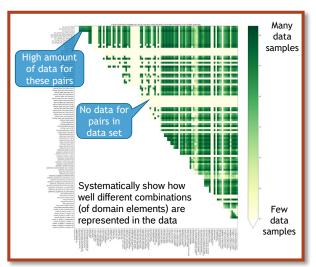
Be able to describe / specify operating conditions (and edges of ODD*) as of PAS 1883:2020 and others

Systematically capture important knowledge and describe the (expected) key input space dimensions and their possible variations (\rightarrow Ontology / Semantic domain model)

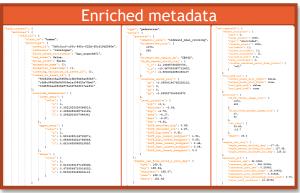
Perform training and assurance data coverage analyses for data driven AI-based systems

Systematically describe training & test data sets including safety-relevant Corner cases / rare critical situations to be considered

For synthetic perception data production & metadata: describe data dimensions that should be variated & incrementally generate new data



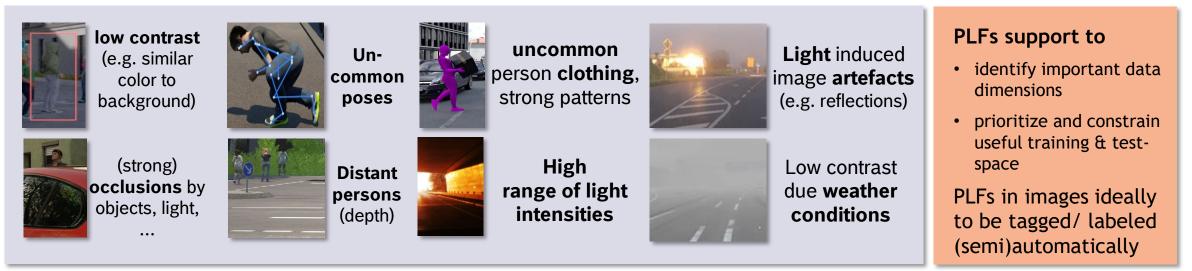
Visualization of an exemplary data coverage analysis



Extract of an enriched metadata JSON for one pedestrian instance 11

June 23rd, 2022 | KI Absicherung Final Event | Frédérik Blank

Performance Limiting Factors (PLFs)



Definition

A measurable factor, either

- Direct physical effect or
- Model of effect

that leads to drops in perception performance

Further examples of PLFs:

- uncommon person locations, above or below ground
- uncommon person motion
- groups of persons, occlusion
- person depictions on images and posters
- person reflections in specular surfaces

• ...

High Level View of domain model / Ontology



Source: Bosch

June 23rd, 2022 | KI Absicherung Final Event | Frédérik Blank

Ontology as **semantic description** of input space to describe Operational Design Domain (ODD) & input data

Total

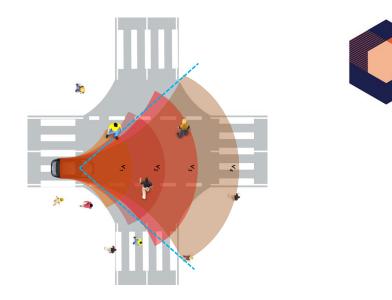
- ~10 subdomains
- ~250 dimensions
- ~1000 variations / alternatives

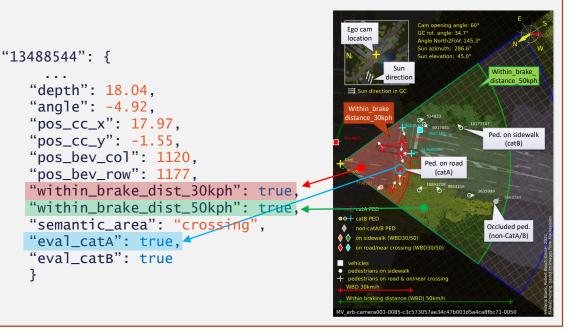
Approach (iterative)

- Review of public data sources / existing standards
- Brainstorming with experts
- Expert interviews
- Iterative refinement
- Needs to be challenged / extended by identified corner cases

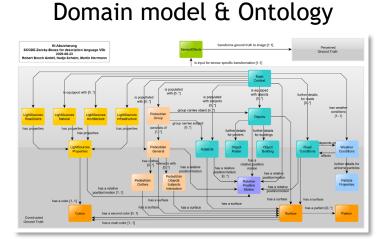
Safety relevant pedestrians

- From a safety perspective and risk assessment, not every pedestrian is "equally" at risk.
 - Include safety relevance of a pedestrian into ML-based metrics
- Description language, ontology & metadata to provide means to:
 - Describe pedestrians and their possible safetyrelated characteristics
- Starting point: Definition of *relevance* based on purely positional considerations:
 - Braking distance / distance of person to egovehicle
 - Ego-Camera opening angle
 - Semantic area of pedestrian location → Road / Sidewalk / Crossing
- Each pedestrian was annotated with safety-related metadata (eval_CatA / eval_CatB / other)



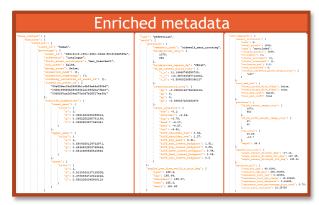


Key enablers in the overall approach for assurance of AI-based functions...



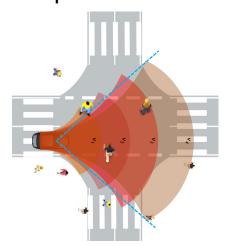
10 sub-somains, 250 dimensions

Enriched metadata



>50 enriched metaannotations per pedestrian

Safety relevant pedestrians



3 safety categories

Frédérik Blank, Robert Bosch GmbH Frederik.Blank@de.bosch.com

KI Absicherung is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

www.ki-absicherung.vdali.de 🈏 @KI_Familie in KI Familie

Data, Metadata and Data Analysis SP 2: Thomas Stauner, BMW AG

ABSICHERUNG

Safe AI for Automated Driving

Final Event | June 23rd 2022

TP2: Generieren von synthetischen Lern- und Testdaten.

Thomas Stauner, BMW AG

Synthetic Data Offers Unique Features for Training and Assurance of ML

- Facilitated GDPR compliance
- Simulation of sensor variants and mounting positions
- Explicit control of coverage and bias
- Influence factor analysis based on targeted variations, esp. for safety analysis
- Design of data of dangerous and/or rare situations
- Provision of rich ground truth and metadata

Same sensor position, different sensor patameters

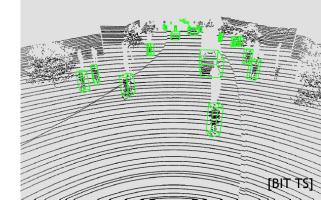
Support for Influence Factor Analysis

• Same camera position, different sun position

Control of the Data Distribution and Generation of Dangerous Situations

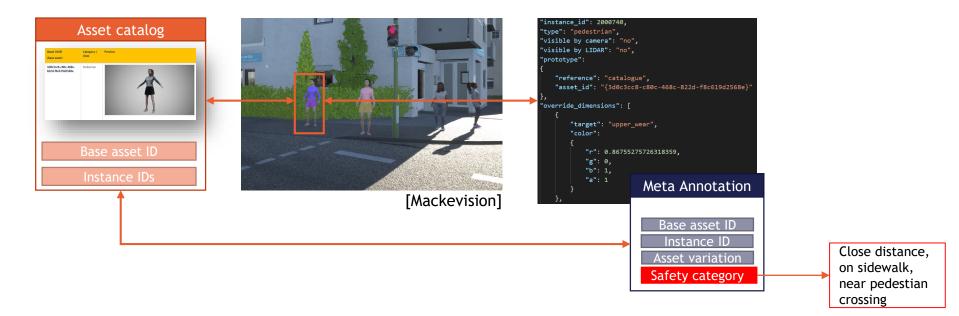
• Varying pedestrian distribution, close pedestrians on the road

Provision of Rich Ground Truth and Metadata



For safety analysis, diverse meta data for synthetic images can be computed

- For the systematic analysis of weaknesses of an AI function, rich meta information is required
- It allows the engineer to retrieve semantic information w.r.t. an ontology for the situation depicted in a frame. Examples are body size of pedestrians or safety relevance w.r.t. the function under development



Two Toolchains with Distinct Features Have Been Developed: (1) with Physical-Based Rendering

- Target: Accurate simulation of light transport within the virtual scene
- Architecture: Integration of Intel OSPray Studio/BIT TS scene generator with real sensor models from Bosch (Camera) and Valeo (Lidar)
- Special Features
 - Automized scenario generation
 - glTF 3D scene format
 - Realistic Lidar data
 - Procedural, physics-based sun-sky model, support of motion blur
 - Natural motion due to motion capturing on assets

High scene complexity

Motion Blur

Two Toolchains with Distinct Features Have Been Developed: (2) with Real-Time Rendering Engine

- Target: exploit capabilities and efficiency of State-of-the-art game engine, with high quality lighting, powerful material systems, animation tools, and flexible APIs
- Special features:
 - Automated scene variations, e.g. clothing, parked cars, combination of movements
 - Effects procedural sun, procedural clouds, wetness, fog, vignetting, lens flare, artificial light
 - Natural motion due to motion capturing
 - Metadata on occlusion
 - Support for automatic scene generation from TP4 format

[Images: Mackevision]

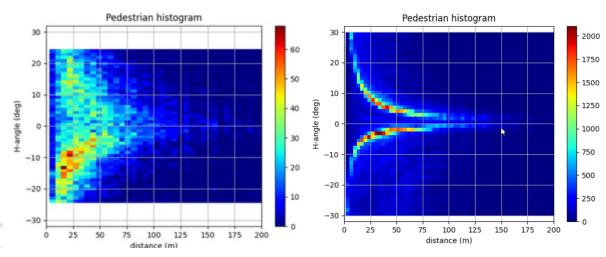
The Toolchains Build on Targeted Asset Generation and Motion Capturing

• Pedestrian assets were designed w.r.t. the TP4 ontology targeting on high coverage

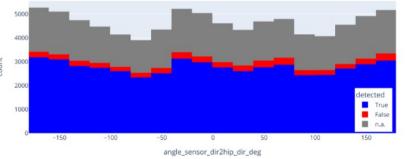
• Synthetic data generation with high degree of realism and accuracy motivates measurement of key elements such as pedestrian motion and material characteristics

[Images: Mackevision]

Data Quality Analysis Contributes to Evidence Workstreams on Data Coverage and Performance Limiting Factors, Examples

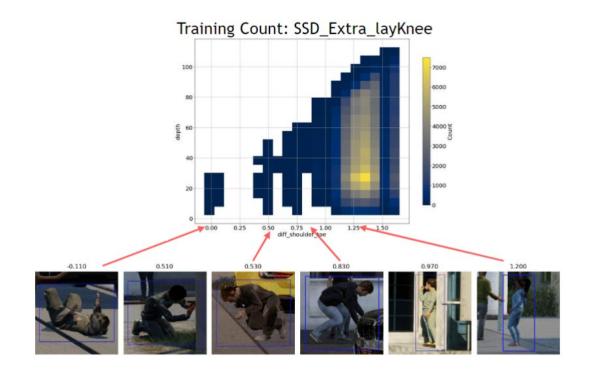


Evaluation of pedestrian distribution [Intel]



Analysis of pedestrian orientation coverage [BMW/Exida]

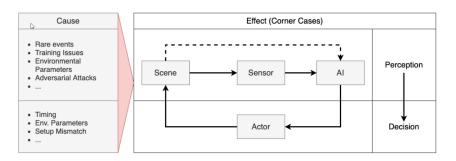
June 23rd 2022 | KI Absicherung Final Event | Thomas Stauner



Analysis of pose coverage [Bosch]

Summary on Data Generation

- Two toolchains with distinct features developed
- 360.000 frames produced and provided to the project
- Broad contribution to evidence workstreams
- Corner case taxonomy developed and methods for corner case detection explored
- Effects of sensor parameter changes and domain adaptation approaches examined



Base structure for corner case taxonomy [QualityMinds]

Dr. Thomas Stauner, BMW AG Thomas.Stauner@bmw.de

KI Absicherung is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

www.ki-absicherung.vdali.de 🈏 @KI_Familie ท KI Familie

Al Function Development SP 1: Fridolin Bauer, BMW AG

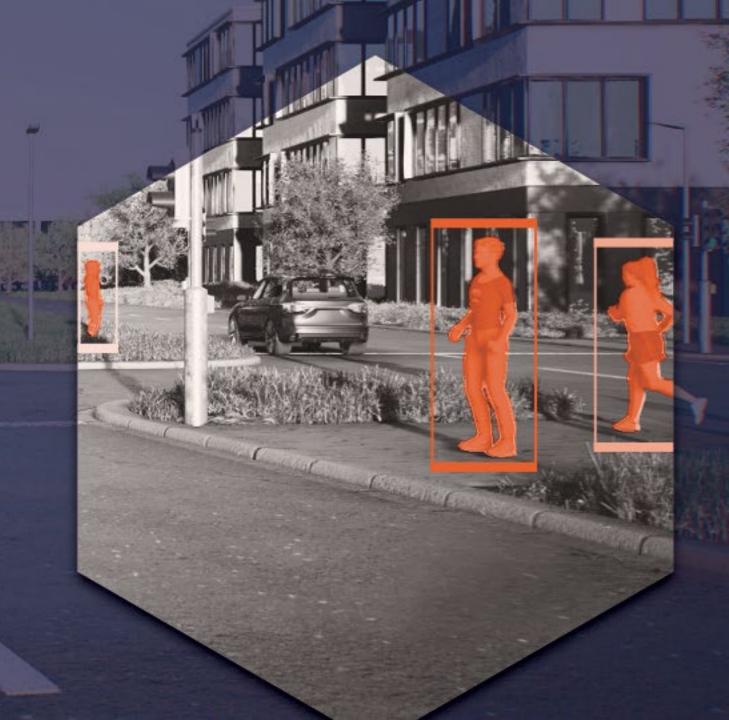
ABSICHERUNG

Safe AI for Automated Driving

Final Event | June 23rd 2022

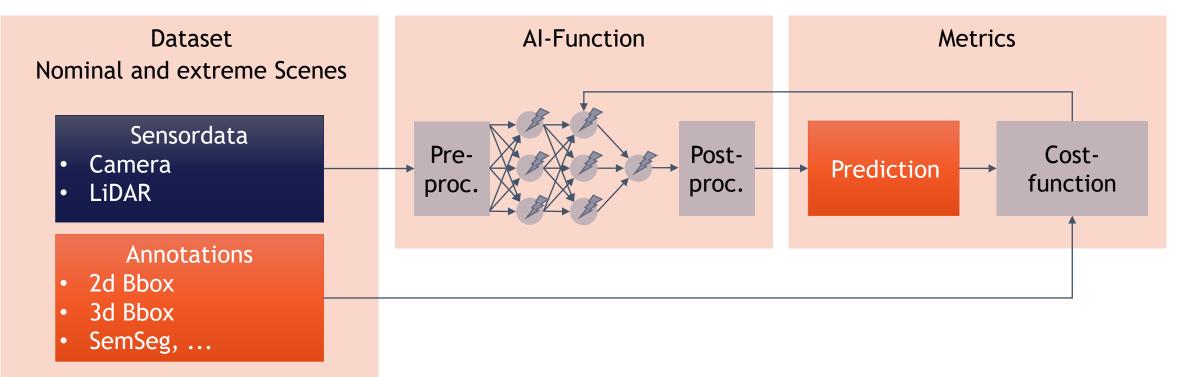
TP1: AI-Function

Fridolin Bauer, BMW AG



Al-function Specification

- Specification of synthetic data, AI-Function and metrics
- From DNN-developers perspective

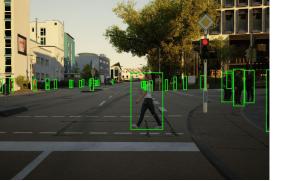


June 23rd 2022 | KI Absicherung Final Event | Fridolin Bauer

Al-function Specification

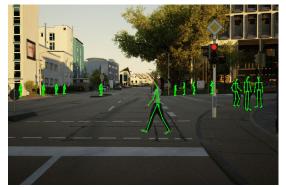
• Examples of data including specified annotation

Mackevision

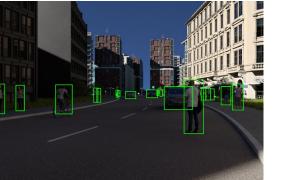


Camera image + 2d Detection

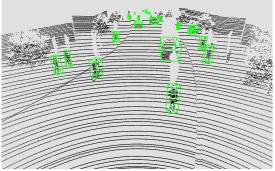
Semantic Segmentation



Skeleton- and Pose Data



Camera image + 2d Detection



LiDAR Data + 3d Detection

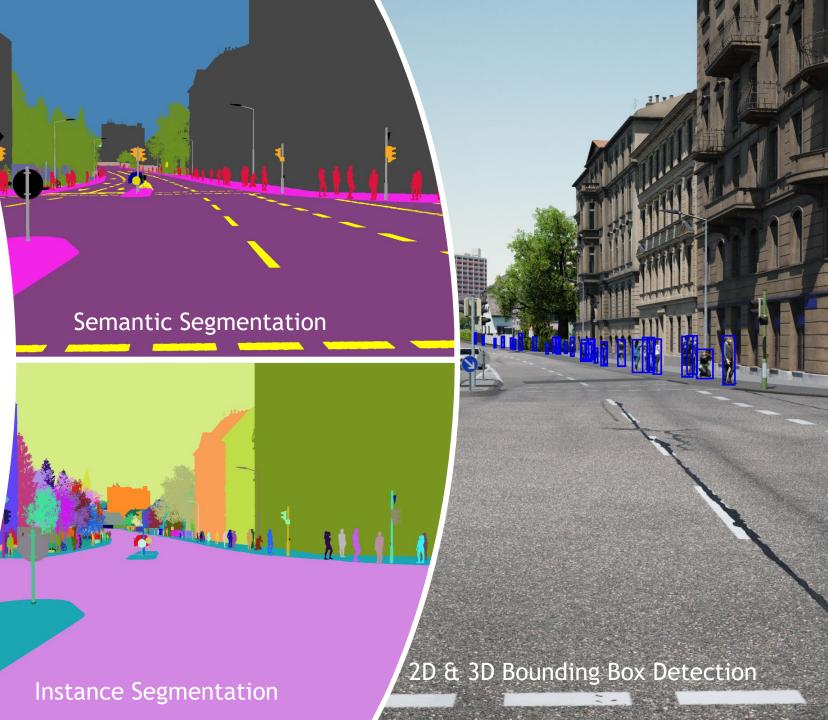
Bodypart Segmentation

Monocular Pedestrian Detection

Task: Detect pedestrians in a single frame from a monocular camera image

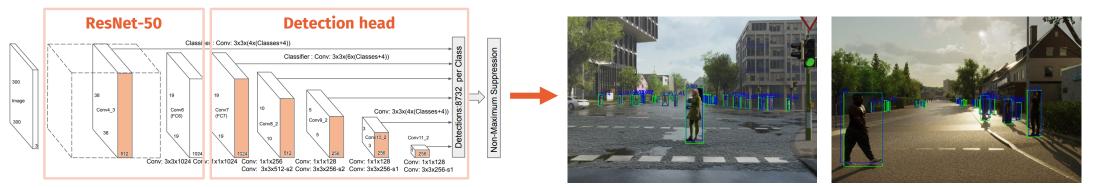
Implemented Algorithms:

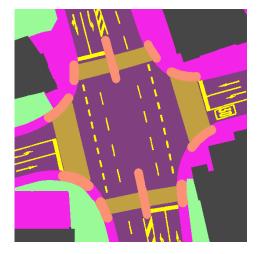
- Single Shot Detector (2D-BB, Opel)
- DeeplabV3+ (Sem-Seg, Intel)
- DeeplabV3 (Sem-Seg, ZF)
- Detectron2 (Instance-Seg, ZF)
- Frustum-PointNets (3D-BB, Valeo)
- Single Shot Detector + pose & posture (2D-BB, HCI)



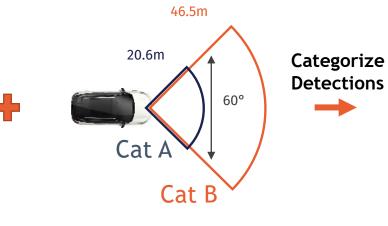
Safety Relevant Pedestrian Evaluation

Single Shot Detector:





Semantic Placement



Breaking Distance to Vehicle

Evaluation Filter	Precision =TP/(TP+FP)	Recall =TP/(TP+FN)
Non-difficult (Training)	+	+
Cat B	01	+
Cat A	_ 1	+ +

¹ FP too high, evaluation filter not applicable

June 23rd 2022 | KI Absicherung Final Event | Fridolin Bauer

Fusion at different levels

- Task: 3D Pedestrian Detection using LiDAR and Camera Data
- Demonstrated Fusion of Camera and LiDAR Data at different Levels
- Algorithms and Partners in the WP
 - Fusion at Sensor Level (Opel)
 - Fusion at Feature Level (BMW)
 - Fusion at Regression Level (ZF)
 - Single Modality Lidar (TUM)
 - Sequential Fusion (Valeo)
 - Fusion at Temporal Level (DFKI)

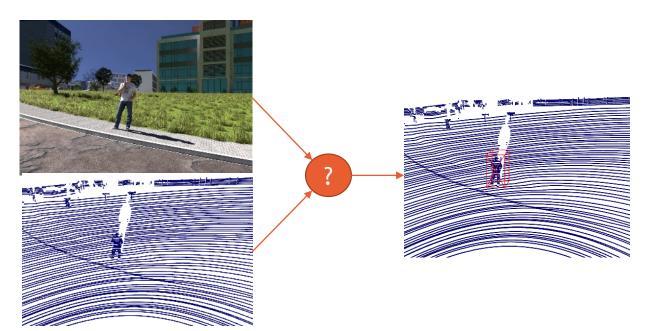
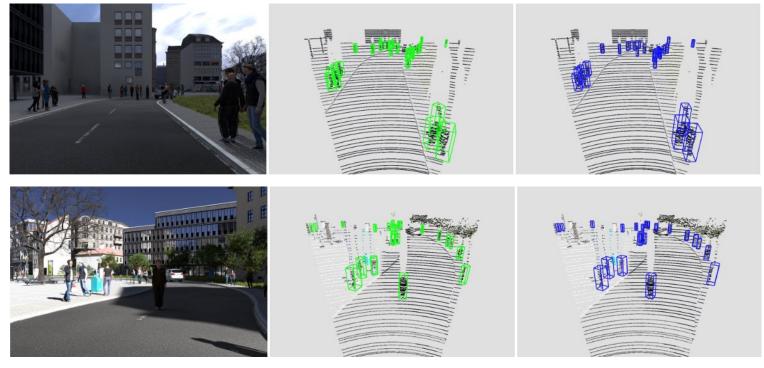


Fig. Task: How to fuse Camera and LiDAR data for 3D Pedestrian detection in LiDAR or Camera space

Fusion at Sensor Level

- Fusion of Camera and LiDAR data at Sensor level
- Fusion: Extended PointPillars by appending LiDAR pointcloud with RGB values from camera



Camera Images

Ground-truth

June 23rd 2022 | KI Absicherung Final Event | Fridolin Bauer

Fusion at Temporal Level

- Developed LRPD (Long Range Pedestrain Detection) algorithm for mid and long range detection
- Developed a two-step Temporal Fusion algorithm using Particle Filter and Faster-RCNN

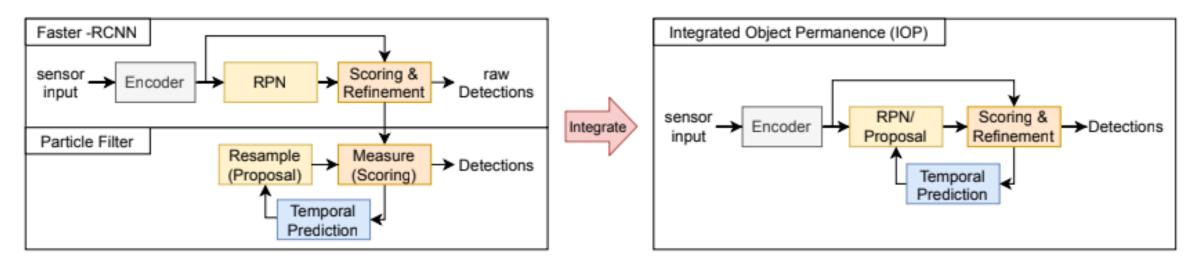


Fig: Combination of two approaches into one interated architecture

Fusion at Temporal Level

• Integrated Object Permanence into Faster-RCNN object detector

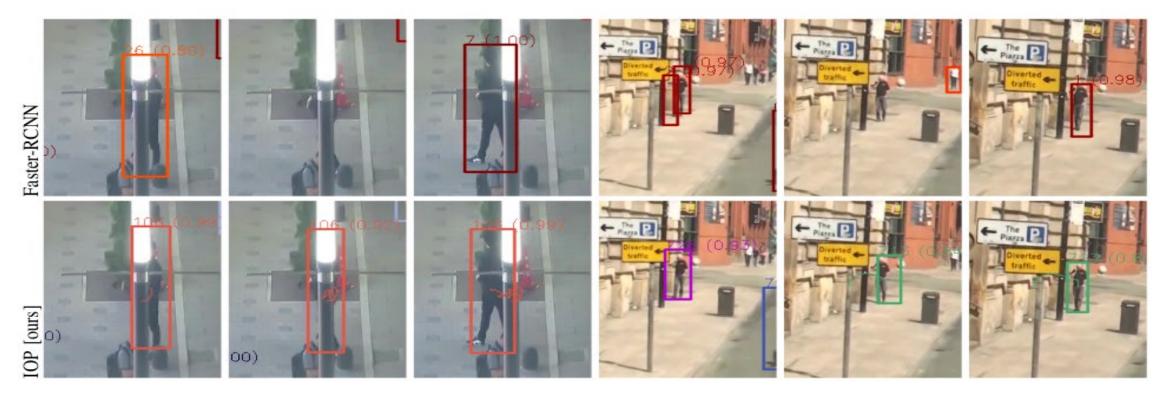


Fig: Comparison: Faster-RCNN and IOP from E1.4.6

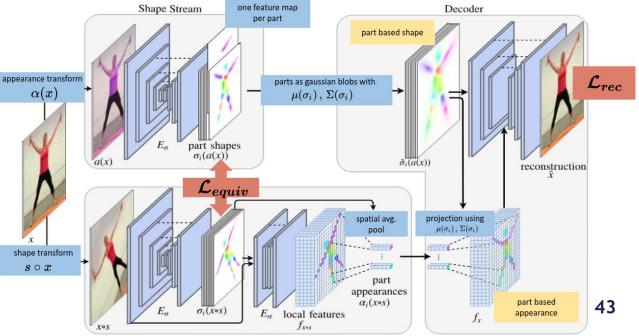
Human Pose Estimation

Supervised Human Pose Estimation

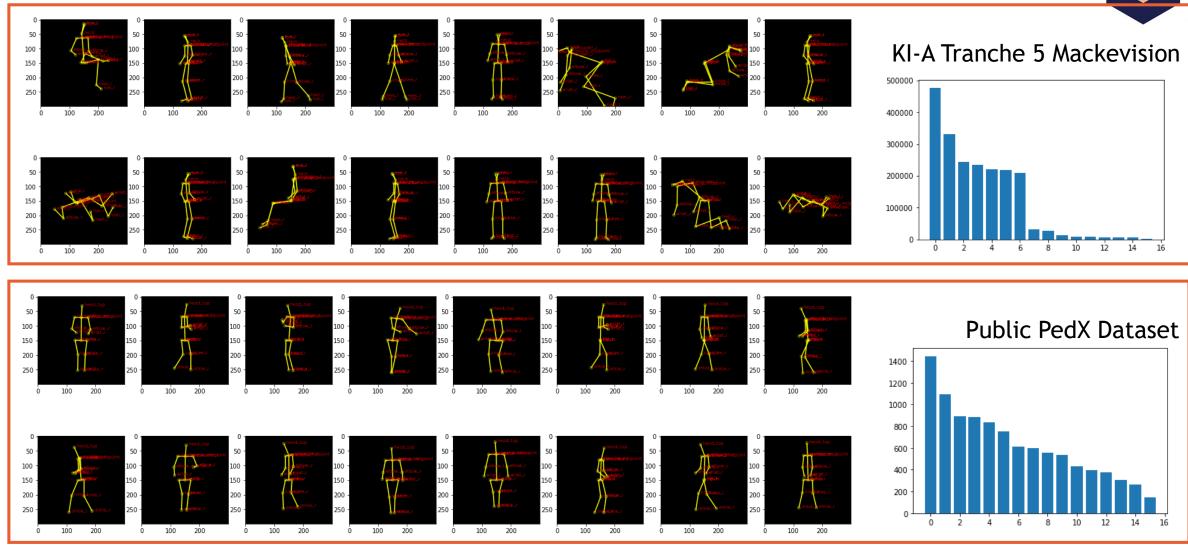
- Far away pedestrians tiny
- Superresolution required
- Hybrid Top-Down/Bottom-Up Approach
- Unsupervised Human Pose Estimation
- No Labels
- Geometric Equivariance Loss
- Appearance Invariance Loss

Sensorfusion for Robust Human Pose Estimation

- Depth Ambiguity
- •-> "Parallele Highlight Vorträge"



16 most common human poses per dataset



June 23rd 2022 | KI Absicherung Final Event | Fridolin Bauer

Fig: Distribution of different human poses on different data sets 44

Fridolin Bauer, BMW AG Fridolin.Bauer@bmwgroup.com

KI Absicherung is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

www.ki-absicherung.vdali.de 🈏 @KI_Familie in KI Familie

Safety Measures & Metrics SP 3: Fabian Hüger, Volkswagen AG

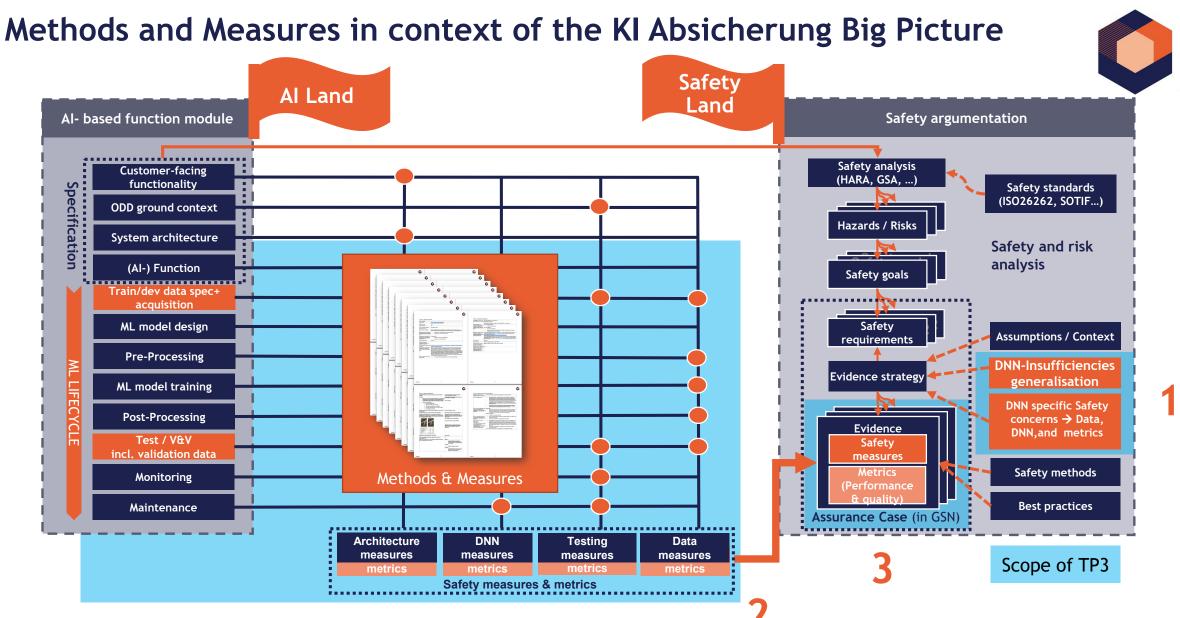
ABSICHERUNG

Safe AI for Automated Driving

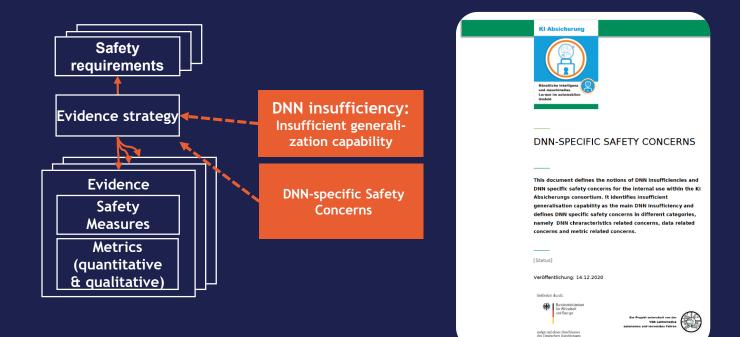
Final Event | June 23rd 2022

Methods and measures for the verification of the Al function

Dr. Fabian Hüger, Volkswagen AG

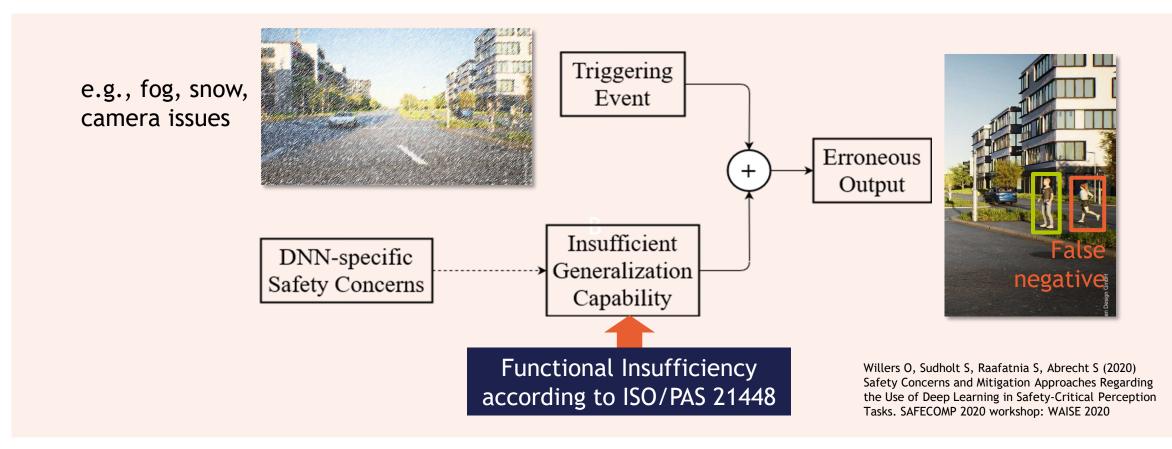


DNN-specific Safety Concerns



DNN-specific Safety Concerns (1/2)

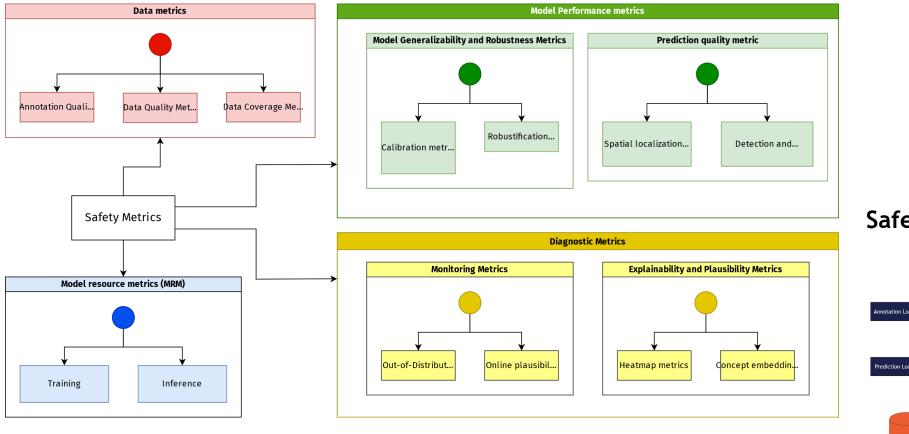
We define **DNN-specific Safety Concerns (SCs)** as underlying issues of DNN-based perception which may negatively affect the safety of a system.



FI-1	INSUFFICIENT GENERALIZATION CAPABILITY Wrong outputs by an AI-based function that was trained on a limited database. Erroneous input to output mapping or wrong approximation.	SC-2.2	INADEQUATE SEPARATION OF TEST AND TRAINING DATA Test data might be correlated to training data which might induce overfitting on test data.	
SC-1.1	UNRELIABLE CONFIDENCE INFORMATION DNNs tend to be overconfident in their predictions under certain conditions or in general outputting unreliable confidence information.	SC-2.3	DEPENDENCE ON LABELLING QUALITY Labelling quality can directly affect the resulting model performance. Moreover, due to missing labelling quality, evaluation results might be misleading.	Based on: O.Willers, S. Sudholt, S. Raafatnia, S. Abrecht: Safety Concerns and Mitigation Approaches Regarding the Us
SC-1.2	BRITTLENESS OF DNNS Non-robustness against common perturbations such as noise or certain weather conditions as well as targeted perturbations known as adversarial examples	SC-2.3.1	MISSING LABEL DETAILS OR META-LABELS Missing meta-labels or label details possibly leads to improper data selection or insufficient training objectives.	of Deep Learning in Safety- Critical Perception Tasks T. Sämann, P.Schlicht, F. Hüger: Strategy to Increase the Safety of a DNN-based Perception for HAD Systems G. Schwalbe, B. Knie, T. Sämann, T. Dobberohul, L.
SC-1.2.1	LACK OF TEMPORAL STABILITY Detection results rapidly changing in time whereas little change occurs in the ground truth	SC-2.4	SPECIFICATION OF THE ODD An incomplete or incorrect ODD specification leads to incomplete data records for training and testing.	Gauerhof, S., V. Rocco: Structuring the Safety Argumentation for Deep Neural Network Based Perception in Automotive Applications
SC-1.3	INCOMPREHENSIBLE BEHAVIOUR Inability to explain exactly how DNNs come to a decision.	SC-2.5	DISTRIBUTIONAL SHIFT OVER TIME A DNN is trained and tested at a certain point in time. Changes will occur naturally and therefore can potentially harm the performance of DNNs.	Functional Insufficiencies
SC-1.4	INSUFFICIENT PLAUSIBILITY Al based functions usually lack basic plausibility checks, which are intended to identify detections of the perception	SC-2.6	UNKNOWN BEHAVIOUR IN RARE CRITICAL SITUATIONS The long tail problem describes the fact that there exists an enormous amount of possibly safety-critical street scenes	DNN- characteristics- related concerns
SC-2.1	function that violate physical laws.	SC-3.1	that have a low occurrence probability.	Data-related concerns
00-2.1	WORLD The distribution of data used in the development should be a valid approximation of the ODD in the real world.	00-0.1	Some state-of-the-art metrics only evaluate the average performance of DNNs. Safety-aware metrics are required to sophistically evaluate the performance of DNNs.	Metric-related concerns

DNN-specific Safety Concerns (2/2)

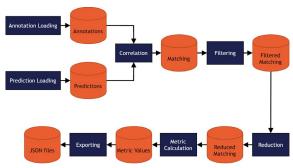
Safety Metrics



Metric Taxonomy & Catalogue

46.5m 20.6m 60° Cat A Cat B

Safety Relevant Pedestrian



Metric Tool

Tim Fingscheidt Hanno Gottschalk Sebastian Houben *Editors*

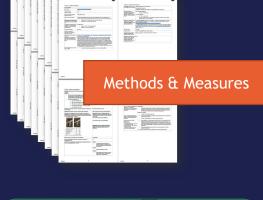
Deep Neural Networks and Data for Automated Driving Robustness, Uncertainty Quantification, and Insights Towards Safety

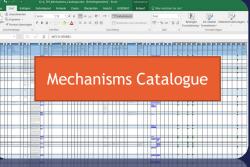
Springer Book

Methods and Measures

Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety Sebastian Houben¹, Stephanie Abrecht², Maram Akila¹, Andreas Bär¹⁵, Felix Brockherde¹⁰ Patrick Feifel⁸, Tir hobadi⁸ Ahmer Hammam⁸, Anse reo Hoffmann¹⁶ Nikhil Kapoor⁷, Jonas Löhde bian Küppers⁹, Svetlana Pavlitskaya¹⁴ Initial Statenar⁴, Julia Rosenzweig¹, M vid Schneider Elena Schulz¹, G rin Varghese⁷ Michae of-Research ehrle Report Opel Automobile GmbI ⁹Hochschule Ruhr West ¹⁰umlaul AG ¹¹Karlsruhe Institute of Technology ¹²Audi AG ¹³ZF Friedrichshafen AG ¹⁴FZI Research Center for Information Technology ¹⁵Technische Universität Braunschweig ¹⁶QualityMinds GmbH

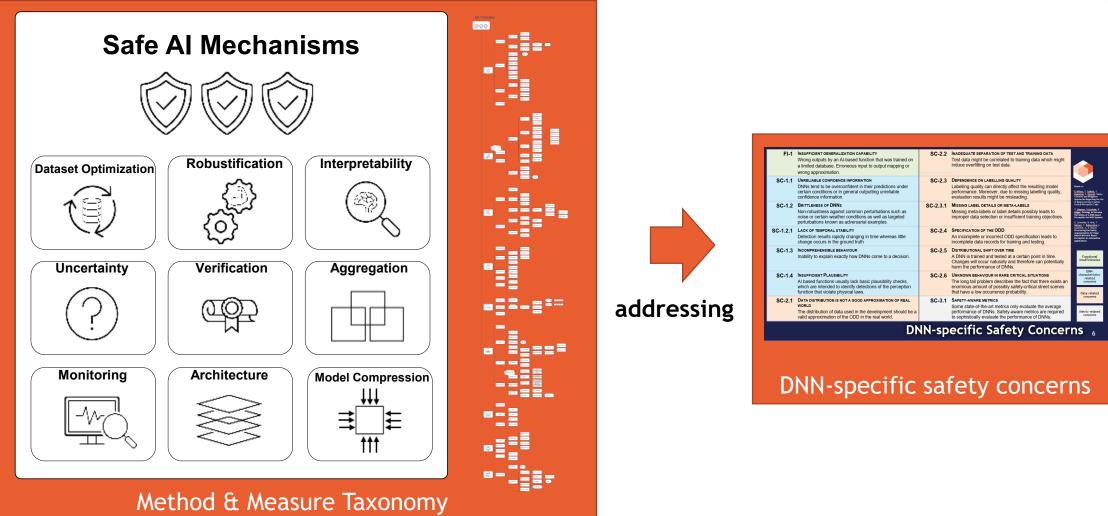
Literature Repository available at: tinyurl.com/e3y4pmxs





Survey available at www.ki-absicherung-projekt.de/

Safe AI Mechanisms addressing the DNN-specific Safety Concerns



Mechanism Descriptions

- 1 Block 1: General Information
- 2 Block 2: Experiment Preparation
- **3** Block 3: Metrics and Evaluation
- 4 Block 4: Results, Effectiveness and Evidences
- + 1-Page-Summaries in public project report (appendix)

Mechanism Catalog

Section 1: General Info			Section 2: Safety Assurance Case	Section 9: Mechanism Rating by Developer						
Mechanism Name	Cluster	Short description	Evidences for the Safety Assurance Case	Main Safety Concern being adressed	Estimated Time to Series Production	Level of effectiveness	Performance Degradation compared to baseline	Changes to DNN architecture	computational overhead at	Additional computational overhead at training time
Confidence Calibration for Object Detection		The Detection Expected Calibration Error (D-ECE) measures the deviation between average confidence and observed accuracy by means of the object's position/scale. Additionally, there are several methods to post-process the confidence estimates of a network in order to obtain a better match (calibration) of the confidence and the observed accuracy. We propose an extension of common methods to perform a calibration that also takes the position/scale of an object into account.	This mechanism shows miscalibration of DNNs and helps to recalibrate DNNs in a post-hoc step. This is useful to elaborate calibration and thus statistical evidence of DNNs output prediction scores.	Unreliable confidence information (SC- 1.1)	1-2 years (some improvements needed)	High	0: equal performance	No changes	Very low	Medium
Aggregation based dependency analysis of neural networks with Visual Analytics		The overall goal of the mechanism is to address the problem of DNN insufficient generalisation capability by understanding semantic concepts of the data. Insufficiencies in DNN predictions on the one hand might stem from independent weaknesses (due to stochastic training), but on the other hand might stem from systematic weaknesses like learned shortcuts or flaws in the data. Finding such correlated insufficiencies and identifying and distinguishing outliers from systematic weaknesses leads to gaining insights into the decision of networks. This can be achieved by understanding the semantic concepts of the data. As an automated analysis of semantics is difficult, we are making use of the human tacit and expert knowledge to examine the semantic features visually. We propose to support and guide the human expert within the analyzation process by methods of Visual Analytics to enable a stringent safety argumentation that can be built upon human understandable arguments.	feedback loop between data generation and meta data generation, DNN development and training and metric/mechanism development. All in all, a stringent safety argumentation could be build upon arguments that are understandable by humans The evidence therefore would be	behavior (SC-1.3)	1-2 years (some improvements needed)	Medium effect	N/A: cannot compare VA Tool to baseline model	No changes		N/A: cannot compare VA Tool to baseline model
Robustness Testing Framework		A black box model can be tested on its robustness to a variety of data augmentations and transferred adversarial attacks via this method. This includes: Augmentations like colour jitter, noise, croping, resizing, transferred black box adversarial attacks, pixel blurring, pixel masking, class-specific augmentations etc. Evaluating different networks, both provided by TP1 and open source implementations, on the robustness against adversarial attacks and different data augmentation techniques. Visualization of attacks and responses of the network. Modular, easily extendable software architecture. Mature experiment parameter configuration setup using hydra (https://hydra.cc/). This mechanism does not support training of the model, but does supports its evaluation.	compared to clean unperturbed data setting. The performance drop between unperturbed and perturbed dataset is slightly less in the robustified VW model as compared to baseline Opel model which does not include any kind of robustification method. Thus this evaluation framework identifies the level of brittleness in DNNs. Further evidences can be derived by identifying the scenes in		< 1 year (slight improvements needed)	High	0: equal performance	No changes	Very low	Low

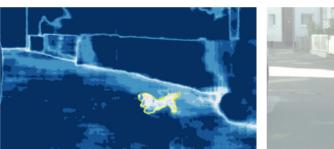
TP3 Safe AI Mechanism Catalog (excerpt, shortened, mechanisms chosen randomly)

Entropy Maximization and Meta Classification for Out-of-**Distribution Detection in Semantic Segmentation**

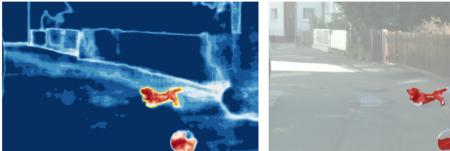
Addressed Safety Concerns: Unreliable confidence information

Enforce segmentation networks to output high prediction uncertainty on **Out-of-Distribution** inputs by means of a modified loss function [BUW]

Figure 2: Comparison of softmax entropy heatmap and OoD prediction mask with our OoD training (top row) and without (*bottom row*). The yellow lines in the entropy heatmaps mark the annotation of the OoD object. The OoD object prediction is obtained by simply thresholding on the entropy heatmap (in this example at t = 0.7 yielding the red pixels in the OoD prediction masks).



Entropy heatmap w/o OoD training OoD prediction w/o OoD training



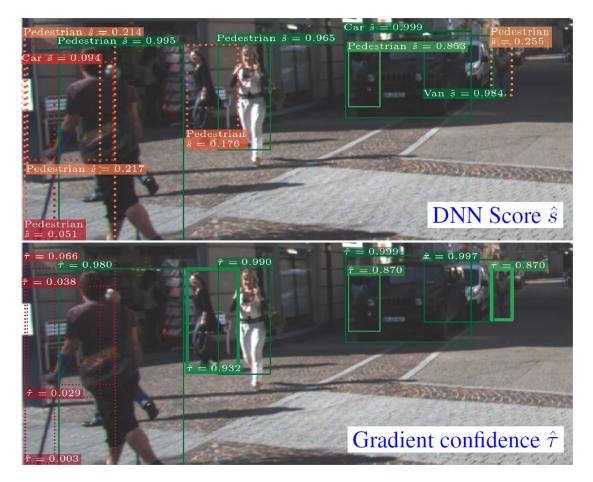
Entropy heatmap w/ OoD training OoD prediction w/ OoD training

Chan et al., Entropy Maximization and Meta Classification for Out-Of-Distribution Detection in Semantic Segmentation, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 5128-5137

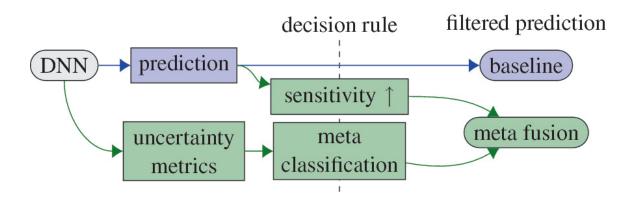
Chan, R., Uhlemeyer, S., Rottmann, M., Gottschalk, H. (2022). Detecting and Learning the Unknown in Semantic Segmentation. In: Fingscheidt, T., Gottschalk, H., Houben, S. (eds) Deep Neural Networks 58 and Data for Automated Driving. Springer, Cham. https://doi.org/10.1007/978-3-031-01233-4 10

Object Detection Uncertainty based on Gradient Information

Addressed Safety Concerns: Unreliable confidence information



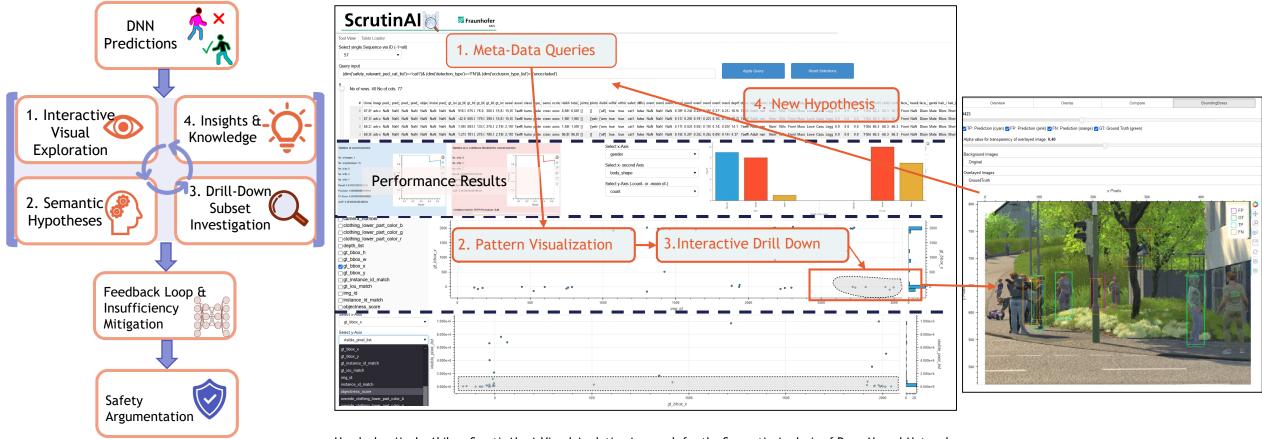
T. Riedlinger et al., Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors,arXiv preprint arXiv:2107.04517v1, 2021 June 23rd 2022 | KI Absicherung Final Event | Fabian Hüger Novel online uncertainty mechanism using gradient information [BUW]



Riedlinger, T., Schubert, M., Kahl, K., Rottmann, M. (2022). Uncertainty Quantification for Object Detection: Output- and Gradient-Based Approaches. In: Fingscheidt, T., Gottschalk, H., Houben, S. (eds) Deep Neural Networks and Data for Automated Driving. Springer, Cham. https://doi.org/10.1007/978-3-031-01233-4_9

Semantic Analysis of DNN Predictions with Visual Analytics and Visual Analytics Tool "ScrutinAI" [IAIS]

Addressed Safety Concerns: Incomprehensible Behavior

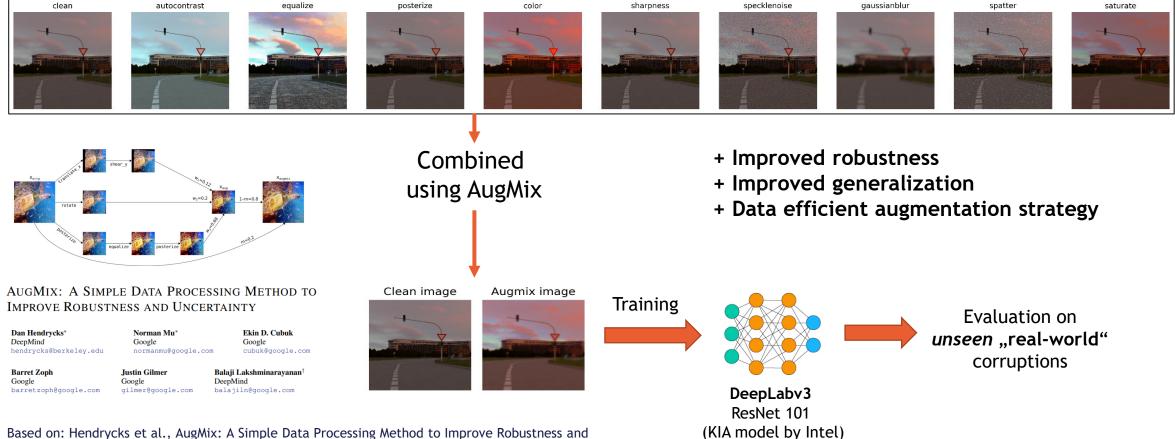


Haedecke, Mock, Akila: "ScrutinAI: A Visual Analytics Approach for the Semantic Analysis of Deep Neural Network Predictions", EuroVis Workshop on Visual Analytics (2022)

[Fraunhofer IAIS]

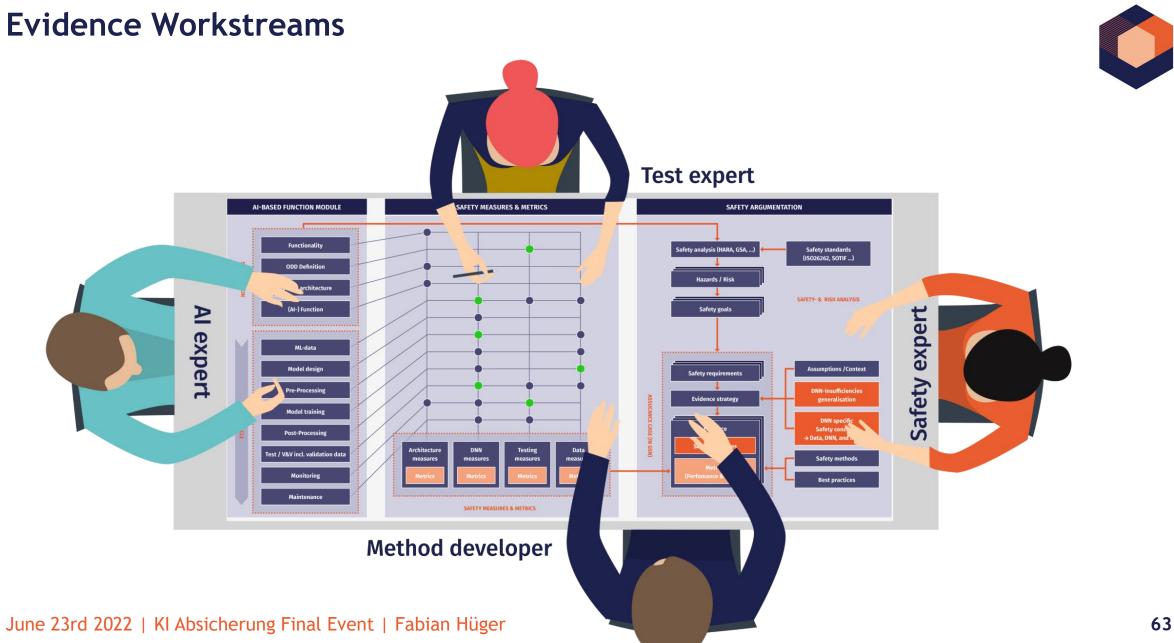
Augmentation Training (AugMix) [Volkswagen]

Addressed Safety Concerns: Brittleness of DNNs

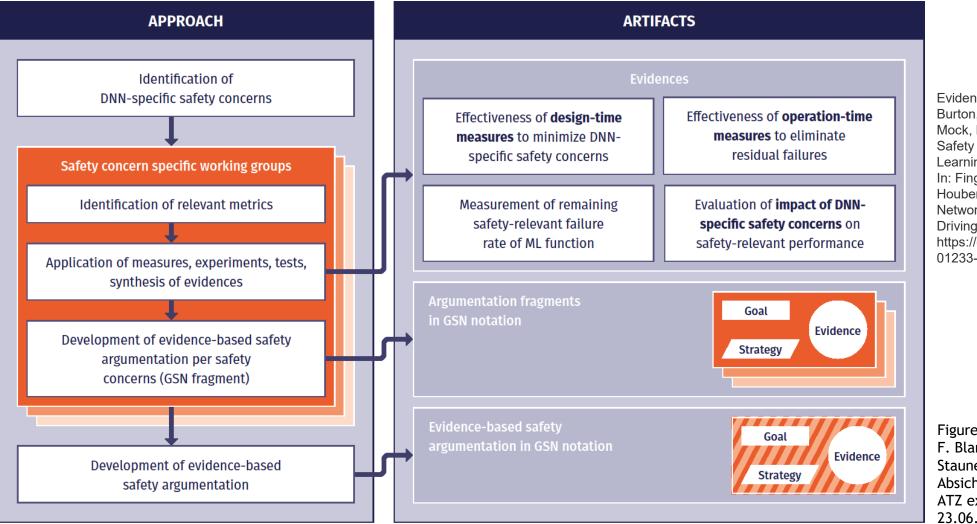


Based on: Hendrycks et al., AugMix: A Simple Data Processing Method to Improve Robustnes Uncertainty, D., https://arxiv.org/abs/1912.02781

Injecting Mechanisms into the Safety Argumentation: Evidence Workstreams



Creation of an evidence-based safety argumentation



Evidence types: Burton, S., Hellert, C., Hüger, F., Mock, M., Rohatschek, A. (2022). Safety Assurance of Machine Learning for Perception Functions. In: Fingscheidt, T., Gottschalk, H., Houben, S. (eds) Deep Neural Networks and Data for Automated Driving. Springer, Cham. https://doi.org/10.1007/978-3-031-01233-4 12

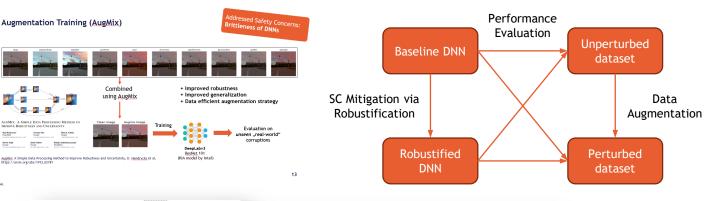
Figure:

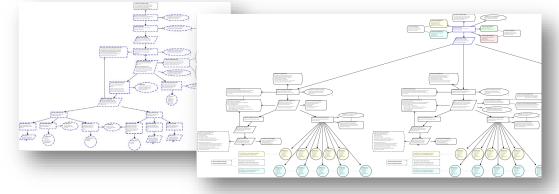
F. Blank, F. Hüger, M. Mock, T. Stauner: Methodik zur Absicherung von KI im Fahrzeug, ATZ extra, Springer Verlag, 23.06.2022

Example Mechanism Evidences AugMix

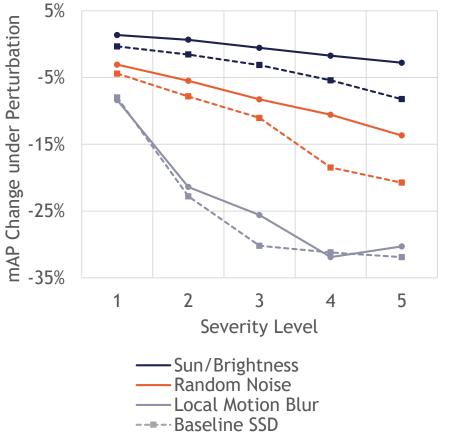
Addressed Safety Concerns: Brittleness of DNNs

Exemplary requirement: "The DNN shall be robust against all types of foreseeable noise."





June 23rd 2022 | KI Absicherung Final Event | Fabian Hüger



Survey available at www.ki-absicherung-projekt.de/

Patrick Fe Hamman Nikhil k Jons Pavlit Rosenzw Elena Se

Dr. Fabian Hüger, Volkswagen AG fabian.hueger@cariad.technology

KI Absicherung ist ein Projekt der KI Familie und wurde aus der VDA Leitinitiative autonomes und vernetztes Fahren heraus entwickelt.

www.ki-absicherung.vdali.de 🈏 @KI_Familie in KI Familie

Gefördert durch:

Bundesministeriur für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestage

5.1

Safety Argumentation SP 4: Andreas Rohatschek, Robert Bosch GmbH

ABSICHERUNG

Safe AI for Automated Driving

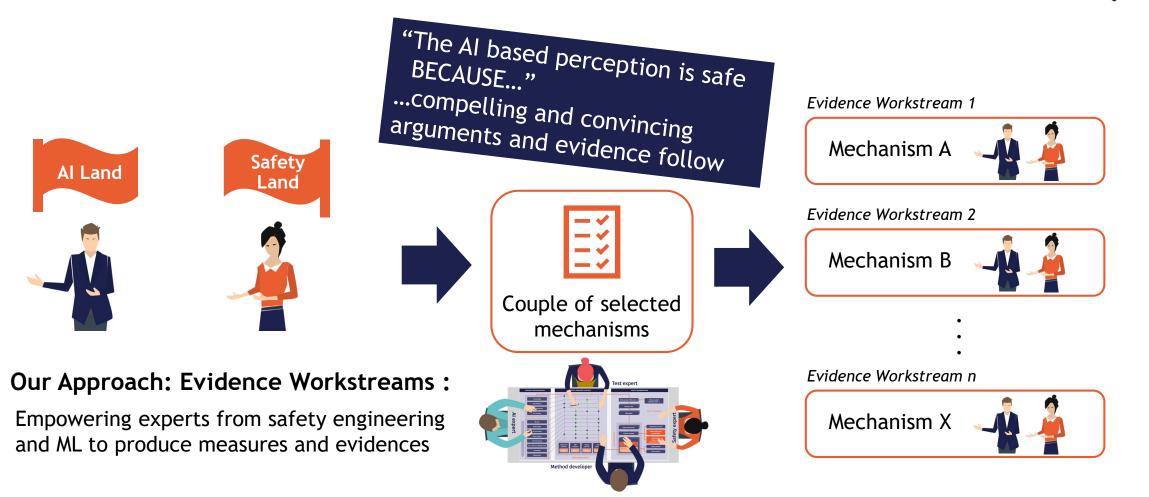
Final Event | June 23rd 2022

TP4 Part I Safety

Andreas Rohatschek, Robert Bosch GmbH

Constant

Our Goal: Create the Safety Pillar for the bridge between AI Land and Safety Land

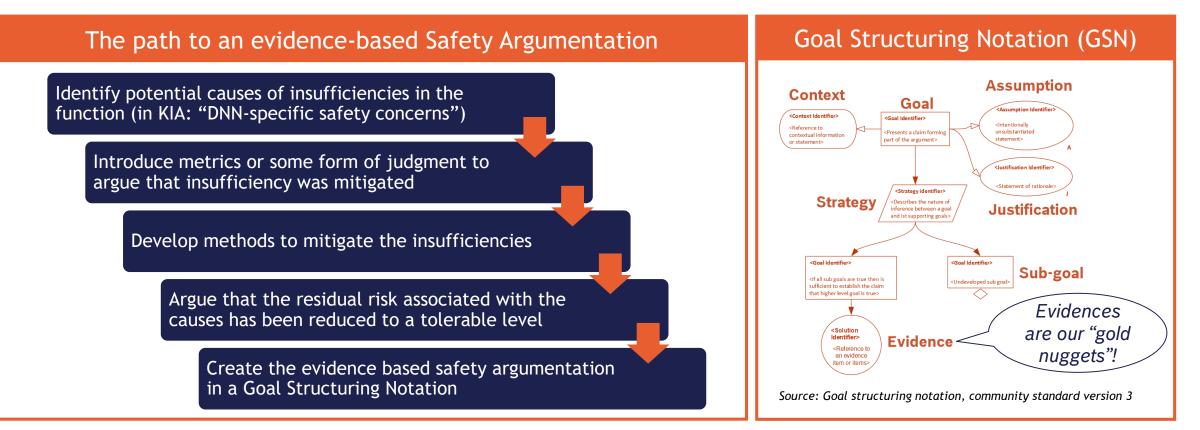


Assurance Case (ISO 15026 - Part 1 Vocabulary):

June 23rd 2022 | Berlin | Final Event | Andreas Rohatschek

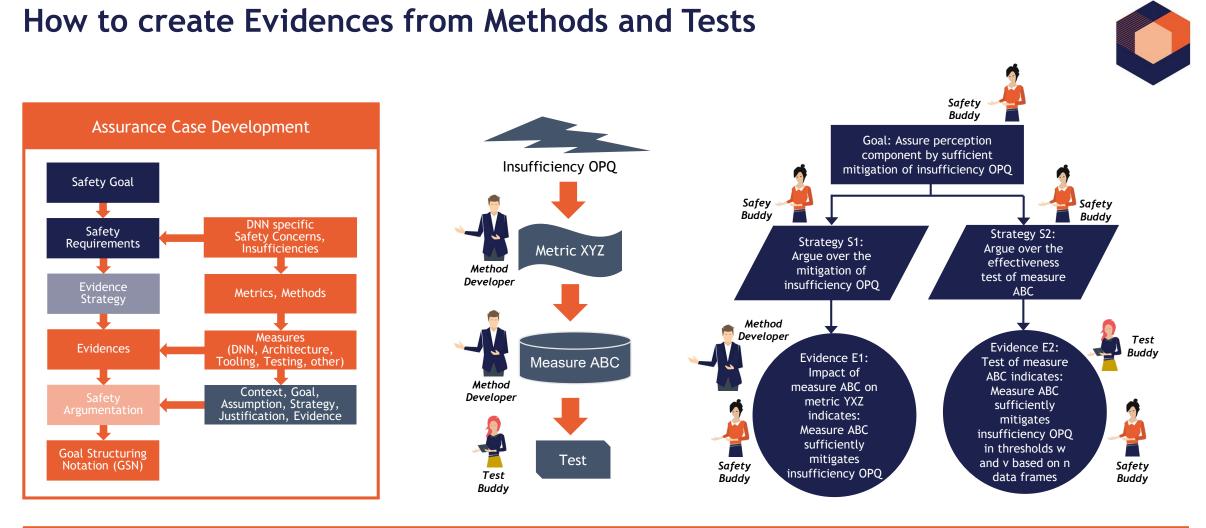
Reasoned, auditable artefact created that supports the contention that its top-level claim (or set of claims), is satisfied, including systematic argumentation and its underlying evidence and explicit assumptions that support the claim(s) 70

Our Approach



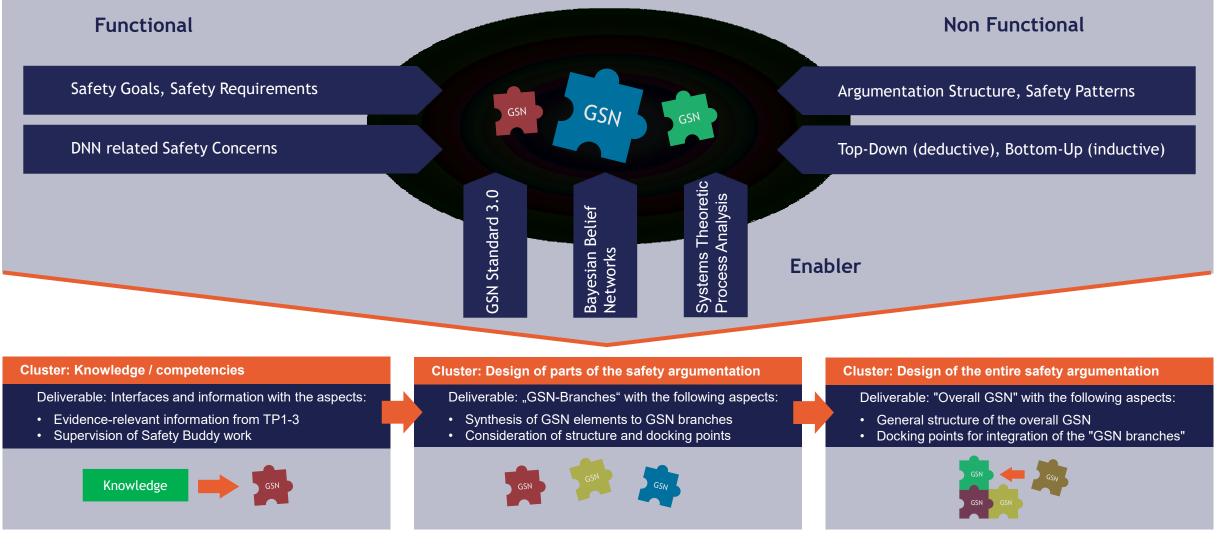
What are the causes of insufficiencies and what sources of evidence can be used to make this argument?

June 23rd 2022 | Berlin | Final Event | Andreas Rohatschek



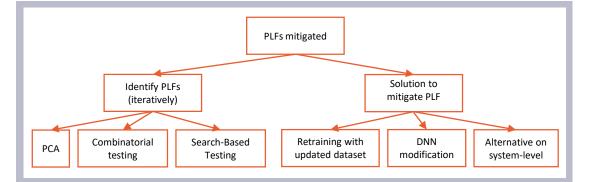
Interaction of Method Developer, Safety Buddy and Test Buddy leads to evidences for the safety argumentation

Building Blocks for the Safety Argumentation

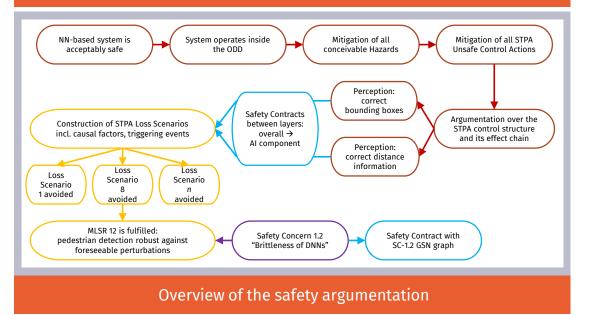


June 23rd 2022 | Berlin | Final Event | Andreas Rohatschek

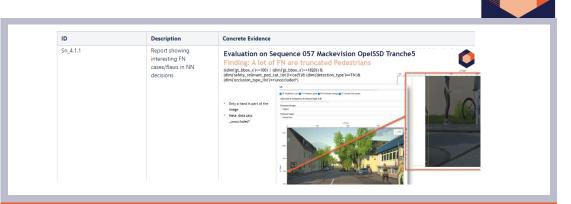
Our Results (Extract)



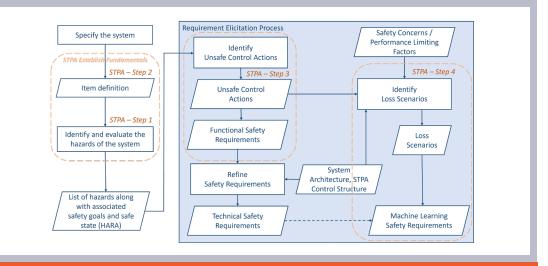
Schematic overview of the GSN safety argumentation for PLF mitigation



June 23rd 2022 | Berlin | Final Event | Andreas Rohatschek



Match concrete evidence and solutions in GSN



STPA based approach for the elicitation of ML Safety Requirements

PLF: Performance Limiting Factor; STPA: Systems Theoretic Process Analysis

Our Achievements

R	We established an evidence-based safety argumentation	
Е	We learned how to structure the safety argumentation	
S	We used Goal Structuring Notation (GSN) to visualize the safety argumentation	
U	We investigated several possibilities to create evidences	
L	We identified gaps in our argumentation and closed them or take them for future work	
т	We integrated argumentations related to DNN-specific safety concerns	
S	We considered the combination of qualitative and quantitative evidences	

Our deliverable: "Overall Goal Structuring Notation" (structure and argumentation branches)

Andreas Rohatschek, Robert Bosch GmbH andreas-juergen.rohatschek@de.bosch.com

KI Absicherung is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

www.ki-absicherung.vdali.de 🍯 @KI_Familie in KI Familie

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Testing SP 4: Frédérik Blank, Robert Bosch GmbH

ABSICHERUNG Safe Al for Automated Driving

Safe AI for Automated Driving

Final Event | June 23rd 2022

Testing, Teststrategy & ML Lifecycle (AP4.4/AP4.5)

Frédérik Blank, Robert Bosch GmbH

Testing & KI-A test strategy

- Plays a major role in assuring safety of Al-based functions
- Results from newly developed test& test methods used as evidences in the safety argumentation
- Required: New approaches focusing on systematically testing the "Al-function" and "used data" in an iterative way

AI

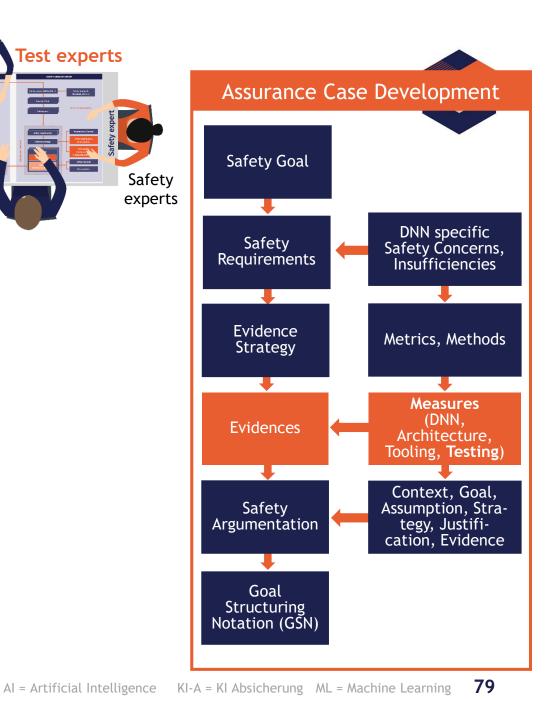
experts

Methods

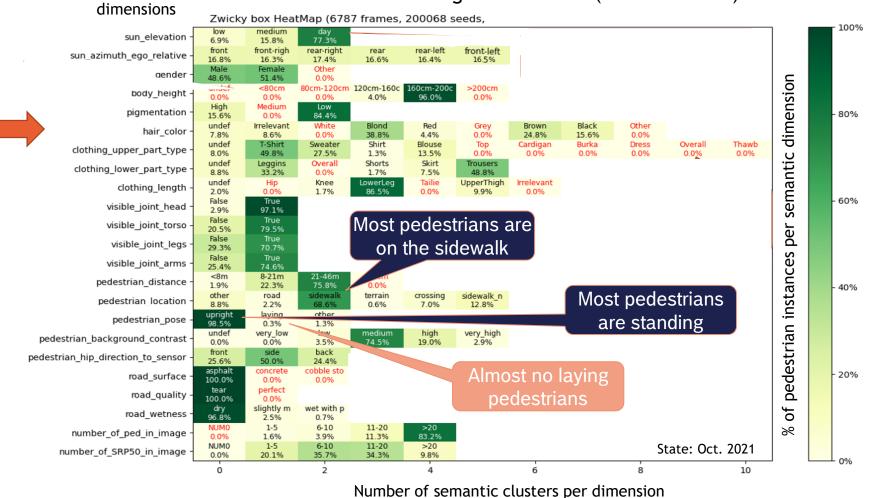
developers

est experts

- KI-A test strategy
 - lists applicable test methods for specific test purposes
 - consists of 4 method classes:
 - Dataset Verification & Coverage Analysis
 - Neuronal Network Component Test
 - Data Pool Verification (dataset label quality analysis)
 - ML Integration & Qualification Test
 - \Rightarrow Provide evidence on the quality of the system under test



Dataset Verification & Coverage Analysis Evaluating the Training Data Coverage with Heatmaps



Evaluation on single dimensions (Tranche#5+#6)

 Input data coverage = degree a dataset covers the semantic domain model (training or testing)

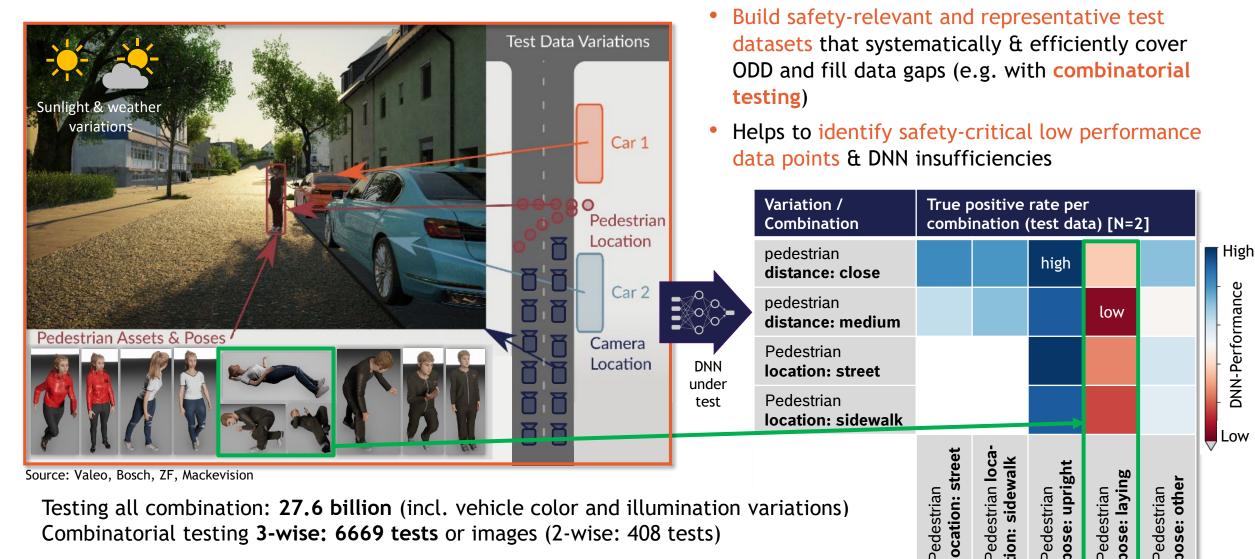
Semantic domain model

 Extension: Combination of dimensions & semantic clusters with each other (e.g. pairs)

June 23rd, 2022 | KI Absicherung Final Event | Frédérik Blank

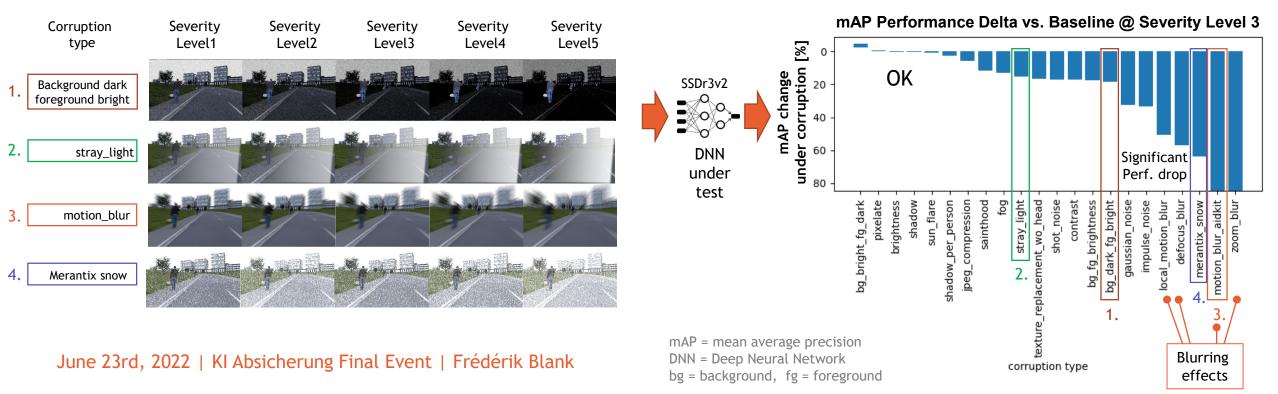
INTERNAL

Systematic generation of parametrizable safety critical scenarios (Euro-NCAP-like) using combinatorial testing



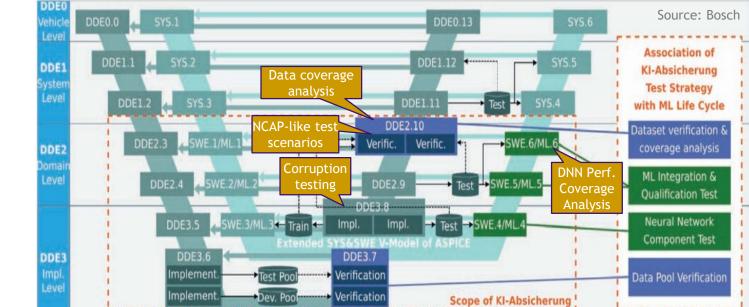
Neuronal Network Component Test -Corruptions Testing to identify most critical corruption types

- DNN robust against natural corruptions (noise, weather & light effects, ...)?
 - A robust DNN should ideally exhibit no performance drop when encountering natural corruptions
- Newly developed corruption types within KI-Absicherung revealed remaining robustness insufficiencies →
 Input for further robustification(s) and evidence to safety argumentation



ML Lifecylce model for ML development

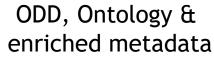
- New consistent data-oriented ML Lifecycle model developed to
 - define systematic, structured ML data-driven development process
 - systematically specify, implement and verify training and testing data sets for SW with ML models
- Adds a second V-model for the data that collaborates with the SYS/SW V-model via defined datasets
- Links to KI Absicherung test strategy on implementation and domain level
- Planned as input for communication with ISO/PAS 8800

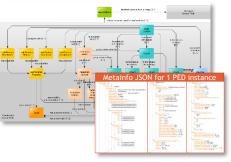


DDE: Data-Driven Engineering ML: Machine Learning SWE: Software Engineering SW: Software

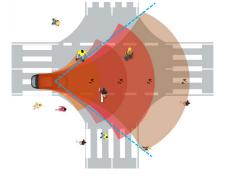
DDE V-Mode

To summarize the work and some of the highlights of TP4...

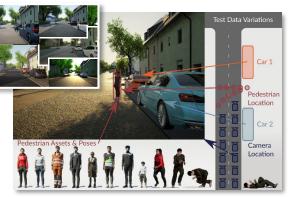




Safety relevant Pedestrians



Systematic parametrized NCAP-like safety scenarios

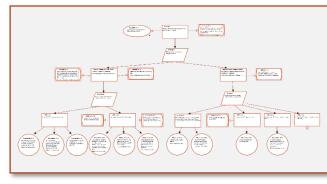


Participation of Safety & Test experts @ Evidence Workstreams

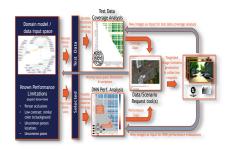
Evidence-based safety Argumentation



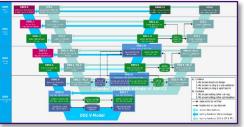
GSN-Fragments from EWS



Test methods & testing with closed-data loop



ML-Lifecycle & Data-driven Engineering Process



ODD = Operational Design Domain; EWS = Evidence Work Streams ML = Machine Learning; GSN = Goal Structuring Notation DDE = Data-driven Engineering

June 23rd, 2022 | KI Absicherung Final Event | Frédérik Blank

Frédérik Blank, Robert Bosch GmbH Frederik.Blank@de.bosch.com

KI Absicherung ist ein Projekt der KI Familie und wurde aus der VDA Leitinitiative autonomes und vernetztes Fahren heraus entwickelt.

www.ki-absicherung.vdali.de 🍯 @KI_Familie in KI Familie

Gefördert durch:

Bundesministeriur für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

13:00-14:00 Mittagspause mit paralleler Postersession

14:00-15:00 Postersession

15:00-15:30 drei parallele Highlightvorträge