Towards Safe AI for Automated Driving

Fabian Hüger, Volkswagen & CARIAD CSCS 2021 (online), November 30, 2021

The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft.

We transform automotive mobility

Agenda

We transform automotive mobility

The car needs to be rethought

CARIAD is here to make automotive mobility safer, more sustainable, and more comfortable.

Comfort

From enjoying the ride to enjoying digital life in your car – everything will become easier, more convenient, and more fun to use.

Safety

Automated and assisted driving will be much safer than any human at the steering wheel.

Sustainability

Continuous software updates keep our cars fresh for many years. Our smart navigation features save kilometers and resources, while reducing congestion.

Our software platform delivers it all.

5 2021 | Germany | CARIAD 5 PUBLIC | CSD class: 2.2 – max. 7 years

One software platform. Lots of benefits.

Updatability

Constant and efficient updatability enables attractive vehicles and the best, always fresh customer experiences.

Speed

The seamless software platform and intelligent data analysis speed up development and time to market.

Scalability

The digital platform suits any car model – from entry-level to top-end. Applications can easily be customized.

Simplicity

6

One unified platform reduces complexitiy – and less hardware reduces costs and weight.

Customer orientation

Data-oriented development helps us to learn from and react to customers' needs and desires.

New revenue streams

Car brands can generate new digital business models– from after sales to monetizing data or third-party apps.

Our platforms E³ 1.1 and E³ 1.2 are technological front runners, while E³ 2.0 will be the one platform in the Group starting 2025.

Agenda

We transform automotive mobility

9

Automated Driving and Al

Processing chain of autonomous driving & the use of Al along

A VOLKSWAGEN GROUP COMPANY

10

Arguing Safety in Automated Driving Systems Al goes safety critical

CENTRAL CHALLENGE

SAFETY

(FuSa + SOTIF)

<u>Central Challenge</u> in bringing highly automated driving on the road.

Argument on safe functioning needed to allow for acceptance & road permission

COMPLEXITY DRIVERS

Mere driving will not suffice to plausibilize

safety – particularly challenging with respect to software updates over time. "Black-Box" approach seems impracticable

Handling complexity of the driving environment – open world, unknown unknowns, etc.

Need for continual safety monitoring & assurance – continuous monitoring

Agenda

We transform automotive mobility

Acknowledgement: The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Energy within the project "Methoden und Maßnahmen zur Absicherung von KI basierten Wahrnehmungsfunktionen für das automatisierte Fahren (KI-Absicherung)". The authors would like to thank the consortium for the successful cooperation.

KI-Absicherung Project & Approach

ABSICHERUNG

Safe AI for Automated Driving

www.ki-absicherung-projekt.de 🈏 @KI_Familie 🖬 KI Familie

The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft. Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages Making the safety of AI-based function modules for highly automated driving verifiable

KIABSICHER UNG

Safe AI for Automated Driving

Pedestrian detection

Challenge

Industry consensus (Safe AI): Methodology for joint safety argumentation

Our Approach: Specification

Our Approach: Al Function Pedestrian detection

Semantic Segmentation

2D Bounding Box Detection

Instance Segmentation

3D Bounding Box Detection

Our Approach: Synthetic Data and ML-Lifecycle

Volkswagen AG

Volkswagen AG

Our Approach: ML-Lifecycle-Validation data

Continuous process for identification, specification and generation of synthetic data

M. Mock et al.: An Integrated Approach to a Safety Argumentation for AI-based Perception Functions in Automated Driving, WAISE @SafeCOMP 2021)

Safety Measures & Metrics

DNN-specific safety concerns

Our Approach: DNN-specific Safety Concerns (1/2)

We define **DNN-specific Safety Concerns (SCs)** as underlying issues of DNN-based perception which may negatively affect the safety of a system.

FI-1	INSUFFICIENT GENERALIZATION CAPABILITY Wrong outputs by an AI-based function that was trained on a limited database. Erroneous input to output mapping or wrong approximation.	SC-2.2	INADEQUATE SEPARATION OF TEST AND TRAINING DATA Test data might be correlated to training data which might induce overfitting on test data.		
SC-1.1	UNRELIABLE CONFIDENCE INFORMATION DNNs tend to be overconfident in their predictions under certain conditions or in general outputting unreliable confidence information.	SC-2.3	DEPENDENCE ON LABELLING QUALITY Labelling quality can directly affect the resulting model performance. Moreover, due to missing labelling quality, evaluation results might be misleading.	Based on: O. Willers, S. Sudholt, S. Raafatnia, S. Abrecht: Safety Concerns and Mitigation Approaches Regarding the Us	
SC-1.2	BRITTLENESS OF DNNS Non-robustness against common perturbations such as noise or certain weather conditions as well as targeted perturbations known as adversarial examples	SC-2.3.1	MISSING LABEL DETAILS OR META-LABELS Missing meta-labels or label details possibly leads to improper data selection or insufficient training objectives.	of Deep Learning in Safety- Critical Perception Tasks T. Sämann, P.Schlicht, F. Hüger: Strategy to Increase the Safety of a DNN-based Perception for HAD Systems G. Schwalbe, B. Knie, T. Sämann. T. Dobberohul, L.	
SC-1.2.1	LACK OF TEMPORAL STABILITY Detection results rapidly changing in time whereas little change occurs in the ground truth	SC-2.4	SPECIFICATION OF THE ODD An incomplete or incorrect ODD specification leads to incomplete data records for training and testing.	Gauerhof, S., V. Rocco: Structuring the Safety Argumentation for Deep Neural Network Based Perception in Automotive Applications	
SC-1.3	INCOMPREHENSIBLE BEHAVIOUR Inability to explain exactly how DNNs come to a decision.	SC-2.5	DISTRIBUTIONAL SHIFT OVER TIME A DNN is trained and tested at a certain point in time. Changes will occur naturally and therefore can potentially harm the performance of DNNs.	Functional Insufficiencies	
SC-1.4	INSUFFICIENT PLAUSIBILITY Al based functions usually lack basic plausibility checks, which are intended to identify detections of the perception	SC-2.6	UNKNOWN BEHAVIOUR IN RARE CRITICAL SITUATIONS The long tail problem describes the fact that there exists an enormous amount of possibly safety-critical street scenes	DNN- characteristics- related concerns	
SC-2.1	function that violate physical laws. DATA DISTRIBUTION IS NOT A GOOD APPROXIMATION OF REAL	SC-3.1	that have a low occurrence probability. SAFETY-AWARE METRICS	Data-related concerns	
	WORLD The distribution of data used in the development should be a valid approximation of the ODD in the real world.		Some state-of-the-art metrics only evaluate the average performance of DNNs. Safety-aware metrics are required to sophistically evaluate the performance of DNNs.	Metric-related concerns	

DNN-specific Safety Concerns 24

Exemplary Measures

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns"

Adressed Safety Concern: Brittleness of DNNs

- Adressing "Brittleness of DNNs" (Example)
 - Requirement: Robustness = Performance even under reasonable perturbations (gained from ODD definition, data analysis and sensor specs)
 - Metric: Performance under corruption
 - Methods (e.g.)
 - Augmentation Training (AugMix)
 - From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation
 - **Evidence**: Effectiveness of measure via metric

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via AugMix

Adressed Safety Concern: Brittleness of DNNs Corruption Robustness

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, D. Hendrycks et al, https://arxiv.org/abs/1912.02781

28

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via AugMix

Adressed Safety Concern: Brittleness of DNNs Corruption Robustness

Augmented Image

Baseline Segmentation

Defended Segmentation

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns"

Adressed Safety Concern: Brittleness of DNNs Adversarial Attacks

30

From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation, N. Kapoor et al. *https://arxiv.org/abs/2012.01558*

Our Approach: Identify, Measure and & Counteract "DNN-specific Safety Concerns" via Wiener Filters Adressed Safety Concern: Brittleness of DNNs Adversarial Attacks

31

Wiener Filters (WF) as an online denoising module **Steps**:

- 1. Convert input image to DFT domain.
- 2. Apply pre-computed WF as a multiplicative filter.
- 3. Convert to spatial domain using IDFT.
- 4. Feed image to target DNN.

From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation, N. Kapoor et al. *https://arxiv.org/abs/2012.01558*

Our Approach: Explore Mechanisms!

- Heatmap-based Attention Consistency Validation
- Mixture of Experts
- Domain Randomization in Optimized Dataset Selection
- MC Dropout
- Uncertainties For Anomaly Detection
- Hybrid Learning using Concept Enforcement
- Active Learning

...

- Adverserial Training
- Hybrid and robustness-focussed Compression

Approx 80 Mechanisms are developed and evaluated

Inspect, Understand, Overcome: A Survey of Practical Methods for Al Safety

Sebastian Houben¹, Stephanie Abrecht², Maram Akila¹, Andreas Bär¹⁵, Felix Brockherde¹⁰, Patrick Feifel⁸, Tim Fingscheidt¹⁵, Sujan Sai Gannamaneni¹, Seyed Eghbal Ghobadi⁸, Ahmed Hammam⁸, Anselm Haselhoff⁹, Felix Hauser¹¹, Christian Heinzemann², Marco Hoffmann¹⁶, Nikhil Kapoor⁷, Falk Kappel¹³, Marvin Klingner¹⁵, Jan Kronenberger⁹, Fahian Küppers⁹, Jonas Löhdefink¹⁵, Michael Mlynarski¹⁶, Michael Mock¹, Firas Mualla¹³, Svetlana Pavlitskaya¹⁴, Maximilian Poretschkin¹, Alexander Pohl¹⁶, Varun Ravi-Kumar⁴, Julia Rosenzweig¹, Matthias Rottmann⁶, Stefan Rüping¹, Timo Särnann⁴, Jan David Schneider⁷, Elena Schulz¹, Gesina Schwalbo³, Joachim Sicking¹, Toshika Srivastava¹², Serin Varghese⁷, Michael Weber¹⁴, Sebastian Wirkert⁶, Tim Wirtz¹, and Matthias Woehrle²

> ¹Fraunhofer Institute for Intelligent Analysis and Information Systems ²Robert Bosch GmbH ³Continental AG ⁴ Valeo S.A. ⁵University of Wuppertal ⁶Bayerische Motorenwerke AG ⁷ Volkswagen AG ⁸Opel Automobile GmbH ⁹Hochschule Ruhr West ¹⁰umlaut AG ¹¹Karlsruhe Institute of Technology 12 Audi AG ¹³ZF Friedrichshafen AG 14 FZI Research Center for Information Technology ¹⁵Technische Universität Braunschweig ¹⁶QualityMinds GmbH

Survey: available at https://www.ki-absicherung-projekt.de/

Our systematic approach for data

Source: Robert Bosch GmbH, Frederik Blank

Operational design domain (ODD)

 An ODD describes / specifies operating conditions under which a given driving automation <u>system</u> or feature is specifically designed to function [...]

 Taxonomy and Definitions for Terms Related to Driving Automation Systems (examples)

A description language & data input space modeling is needed to...

Be able to describe / specify operating conditions (and edges of ODD*) as of PAS 1883:2020 and others

Systematically capture important knowledge and describe the (expected) key input space dimensions and their possible variations having an influence on the functional performance of a DNN-based function (\rightarrow Zwicky Boxes & Ontology)

Perform training and assurance data coverage estimations for data driven AI-based systems

æ

Describe Corner cases / rare critical situations to be considered in training / test data sets

For synthetic perception data production & meta-data: describe data dimensions that should be variated & incrementally generate new data by analyzing coverage and generating missing combinations

Based on: O. Willers, S. Sudholt, S. Raafatnia, S. Abrecht: Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks

High Level view of Ontology / Domain model derived from SCODE Zwicky-Boxes

Total

- ~250 dimensions
- ~1000 alternatives
- Several Sub-domains

Approach

- Review of public data sources
 / existing standards
- Brainstorming with experts
- Expert interviews
- Iterative refinement
- Needs to be challenged / extended by identified corner cases

Data representations of the data input space aligned to ontology

Ontology Graph (Relations)

Visualization of KI Absicherung pedestrian sub ontology

Representations of variations

DAYTIME	morning	da	y e	vening	night				
HAZE/FOG		no		yes					
STREET CONDITION	dry	wet	icy	snow	broken				
δκγ	cloudy		no		clear				
RAIN		no		yes					
REFLECTION ON ROAD		no		yes					
SILADOW ON ROAD		no		yes					
VRU TYPE	a	dult		child					
VRU POSE	pedestria	un .	jøgger		cyclist				
VRU CONTRAST TO BG	1	(1987		high					

Zwicky Box - Discretized variations of important dimensions (Bosch)

Asset & Object descriptions for data analytics

Pedestrian:Age "adult" Pedestrian:BodyHeight "160cm-200cm" Pedestrian:BodyShape "thin" Pedestrian:BodyType "hourglass" Pedestrian:FaceShape "oval" Pedestrian:Gender "female" Pedestrian:HairColor "black" Pedestrian:HairColor "black" Pedestrian:HairColor "black" Pedestrian:HairStyle "other" Pedestrian:Pigmentation "medium" Pedestrian:Pose "walking" Pedestrian:SkinModification "no" Pedestrian:SpecialHandicap "no"

Source: BIT-TS

Object GT Annotations for DNN-Training & Testing

Height = 55 px Width = 10 px Occlusion_level: 80% Occluded_body_part: arm Occluder: lamp Within_breaking_distance _30kph: true

Systematic Combination of variations

Dimension	Person1	Person2	Person3	•••
Age	Child	Teenager	Adult	
Gender	Male	Female	Male	
Body height	80-120 cm	120-160 cm	160-200 cm	
Pose	Running	Lying	Walking	
Pedestrian Location	Middle of street	Left side walk	Right side walk	
•••		•••	•••	

Systematically identify and describe the (known / expected) key input space dimensions and their possible variations & combinations having an influence on the functional performance of a DNN-based function

Structured Incremental dataset generation to boost data coverage (Vision)

38

Test method result as input to Assurance Case (to be combined with other data related evidences)

NCAP inspired test data production process

Source: ZF, Thomas Schulik

ML-Lifecycle-Validation data

Definition of base scenario and location on base context

Story

A pedestrian is approaching the ego vehicle between two parking cars under different environment conditions

Discretization of dimensions in "Zwicky Boxes"

Ego XY position		pos-0-0	pos	s-0-1	pos-0-2	pos	-0-3	pos-0-4	pos-0-	5 pos-1	-0 pos	-1-1	pos-1-2	pos-1	3	pos-1-4	ł pos-	-1-5		
Pedestrian XY position		pos-0-0	pos-1-0	pos-2-0	pos-3-0	pos-4-	-0 ро	s-5-0 pos	-6-0 pos-	7-0 pos-0-1	pos-1-1	pos-2-1	pos-3-1	pos-4-1	pos-5	i-1 p	pos-6-1 po	os-7-1		
Pedestrian pose		pose01			ро	pose02 r			pose03	pose03 pose04			pose05							
Pedestrian asset		A1		A2		A3		A4 A5		A6	A7		А	A8		A9 A10				
Pedestrian hip direction		d0		d45		d90	90 d135		5	d180	d225			d2	70	d315				
Parked vehicle 1 type		BI	BMW1 BMW2		BMW7I		VW ID.3		VW Golf 8		8			VW Atlas						
Parked vehicle 1 XY position		pos-0-	pos-0-0 pos-0-1 pos-0		pos-0-2	2 pos-1-0		pos-1-1	1 pos-1-2		pos-2-0		pos-2-1		pos-2-2					
Parked vehicle 1 color	BMW Black	BMW Cerium grey	BMW Melbourne red	BMW Mineral grey	BMW Misano blue	BMW Sao Paolo yellow	BMW Snapper Rocks blue	BMW Sunset orange	BMW White	VW Gletscher Weiss	VW Mangangrat	VW Mekana Turquoise	VW Mondsteing	rau VW Scale Silver	V Stonev Blu	W vashed En ue C	VW ergetic range	VW Deep Black	VW Delfingrau	VW Kings Red
Parked vehicle 2 type		BMW1 BMW2				BMW7I			VW ID	VW ID.3 VW G		VW Golf	8	VW Atlas						
Parked vehicle 2 color	BMW Black	BMW Cerium grey	BMW Melbourne red	BMW Mineral grey	BMW Misano blue	BMW Sao Paolo yellow	BMW Snapper Rocks blue	BMW Sunset orange	BMW White	VW Gletscher Weiss	VW Mangangrat	VW Mekana Turquoise	VW Mondsteing	rau VW Scale Silver	V Stonev Blu	W vashed En ue C	VW ergetic range	VW Deep Black	VW Delfingrau	VW Kings Red
Illumenation			direct sun							diffuse light										
Sun direction		d0		d45		d90		d13	d135 d180		d180 d225			d270			d315			
Sun elevation		low				medium					day									
Road surface			,	A			В				C D									

Source: Robert Bosch GmbH

- **Discretization:** The most critical dimensions are identified and discretized
- Test coverage: With pairwise testing it's possible to achieve a high error coverage in traditional software testing

Data production - Example data snapshot 1

- Safety critical: Pedestrian has a running pose towards the camera
- The perception function shall be able to detect the pedestrian early enough without any image perturbations

Those images are well suited as a reference for the analysis of brittleness in DNN's

Data production - Example data snapshot 1

- Safety critical: The legs are extended to the driving lane
- Uncommon pose: Pedestrian lays between two vehicles and is difficult to see

In which combinations is the object detector **not** capable to perceive the pedestrian?

Examples for data post processing

brightness

fog

contrast

Motion blur

Test space exploration optimization

47

The most performance critical test cases are identified early in the test exploration "Adaptive test case selection for DNN-based perception functions" Paper release: https://ieeexplore.ieee.org/document/9582499

Adaptive test case selection for DNN-based perception functions, Bernhard, J.; Schulik, T.; Schutera, M.; Sax, E., 2021 IEEE International Symposium on Systems Engineering (ISSE)

5

How do we work

M. Mock et al.: An Integrated Approach to a Safety Argumentation for AI-based Perception Functions in Automated Driving, WAISE @SafeCOMP 2021)

Our Approach: Summary

Our Approach: Evidence Workstreams

Empowering experts from safety engineering and ML to produce measures and evidences

S. Burton et al (2022): Safety Assurance of Machine Learning for Perception Functions, to be published

Agenda

We transform automotive mobility

Summary

Findings & Consequences

- Safe AI is a central challenge for highly automated driving
- KI-Absicherung provides an approach for Safe Al
- Approach may serve as template for the industry and beyond (see ISO PAS 8800)
- Deep integration of Al-specifics into development PMT is necessary (continuous assurance of Al)

Contact:

Fabian Hüger

Artificial Intelligence Safety @Volkswagen CARIAD

Contact: fabian.hueger@volkswagen.de

https://scholar.google.de/citations?user=ISPOi1UAAAAJ

www.ki-absicherung-projekt.de 🈏 @KI_Familie in KI Familie

Thank you!

We transform automotive mobility

