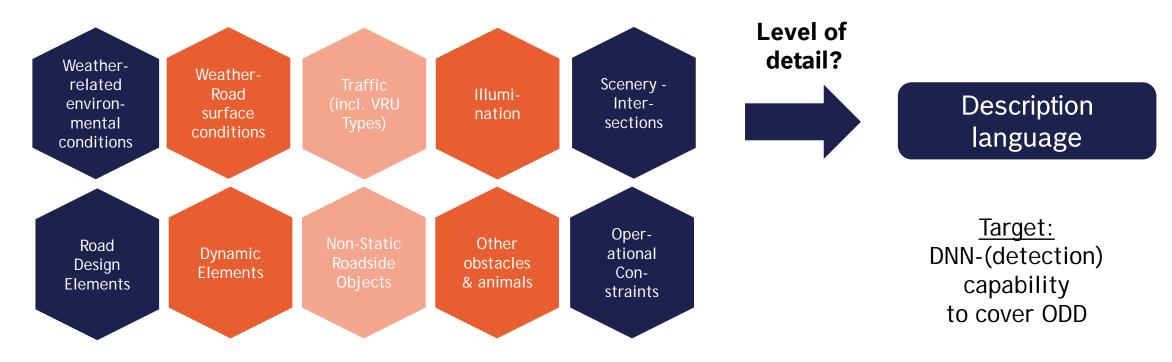
KI ABSICHERUNG Safe AI for Automated Driving

Thomas Schulik (ZF Friedrichshafen AG) Frédérik Blank (Robert Bosch GmbH) Ontology-based data structuring, usage and testing in KI Absicherung

October 7th, 2021


Description language and ontology development

Operational design domain (ODD)

 An ODD describes / specifies operating conditions under which a given driving automation system or feature is specifically designed to function [...]

• Taxonomy and Definitions for Terms Related to Driving Automation Systems (examples):

A description language & data input space modeling is needed to...

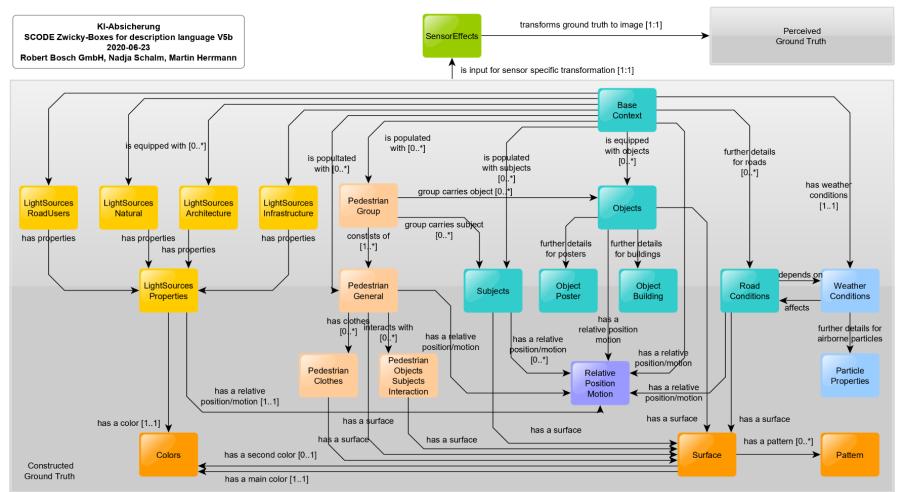
Be able to describe / specify operating conditions (and edges of ODD*) as of PAS 1883:2020 and others

Systematically capture important knowledge and describe the (expected) key input space dimensions and their possible variations having an influence on the functional performance of a DNN-based function (\rightarrow Zwicky Boxes & Ontology)

Perform training and assurance data coverage estimations for data driven AI-based systems

Describe Corner cases / rare critical situations to be considered in training / test data sets

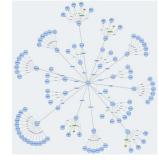
For synthetic perception data production & meta-data: describe data dimensions that should be variated & incrementally generate new data by analyzing coverage and generating missing combinations


DNN-specific Safety Concerns (examples)

Data distribution is not a good approximation to target domain

Based on: O. Willers, S. Sudholt, S. Raafatnia, S. Abrecht: Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks

High Level view of Ontology / Domain model derived from SCODE Zwicky-Boxes


Quelle: Bosch

Data representations of the data input space aligned to ontology

Ontology Graph (Relations)

Visualization of KI Absicherung pedestrian sub ontology

Representations of variations

DAYTIME	morning	de	8Y.	evening	night				
HAZE/FOG		80		yes					
STREET CONDITION	dry	wet	icy	301010	broken				
δκγ	cloud	y:	no		clear				
RAIN		na		yes					
REFLECTION ON ROAD		no		yes					
SHADOW ON ROAD		no		yex					
VRU TYPE	a	dult		child					
VRU POSE	pedestri	ian	jogge	r -	cyclist				
VRU CONTRAST TO BG	1	Scine:		high					

Zwicky Box – Discretized variations of important dimensions (Bosch)

2021-10-07 | KI-A @ KI-DL midterm event

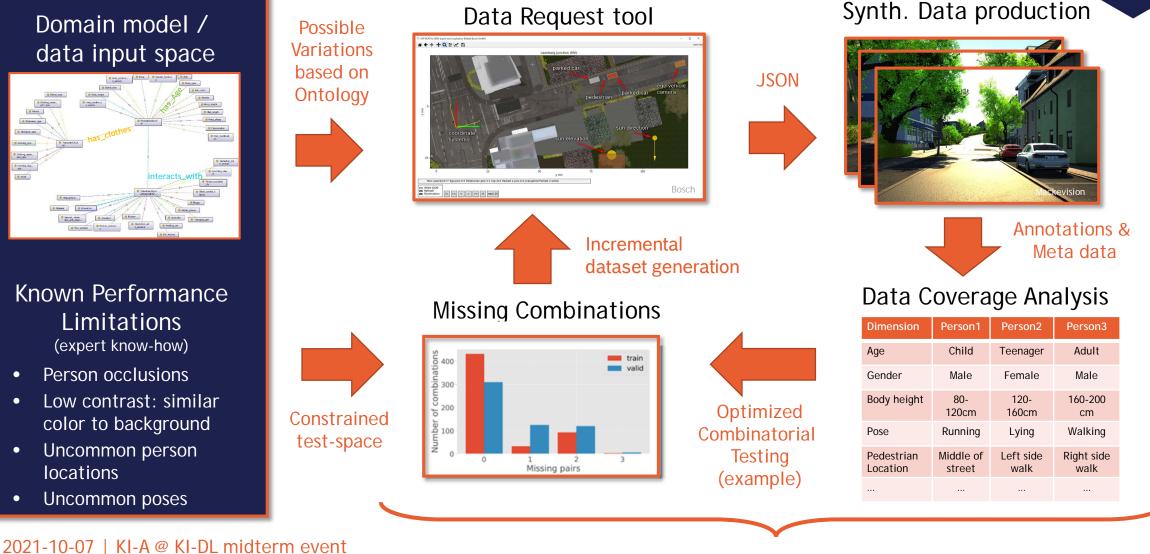
Asset & Object descriptions for data analytics

Pedestrian:Age "adult" Pedestrian:BodyHeight "160cm-200cm" Pedestrian:BodyShape "thin" Pedestrian:BodyType "hourglass" Pedestrian:FaceShape "oval" Pedestrian:Gender "female" Pedestrian:HairColor "black" Pedestrian:HairLength "long" Pedestrian:HairStyle "other" Pedestrian:Pigmentation "medium" Pedestrian:Pose "walking" Pedestrian:SkinModification "no" Pedestrian:SpecialHandicap "no"

Source: BIT-TS

Object GT Annotations for DNN-Training & Testing

Height = 55 px Width = 10 px Occlusion_level: 80% Occluded_body_part: arm Occluder: lamp Within_breaking_distance _30kph: true

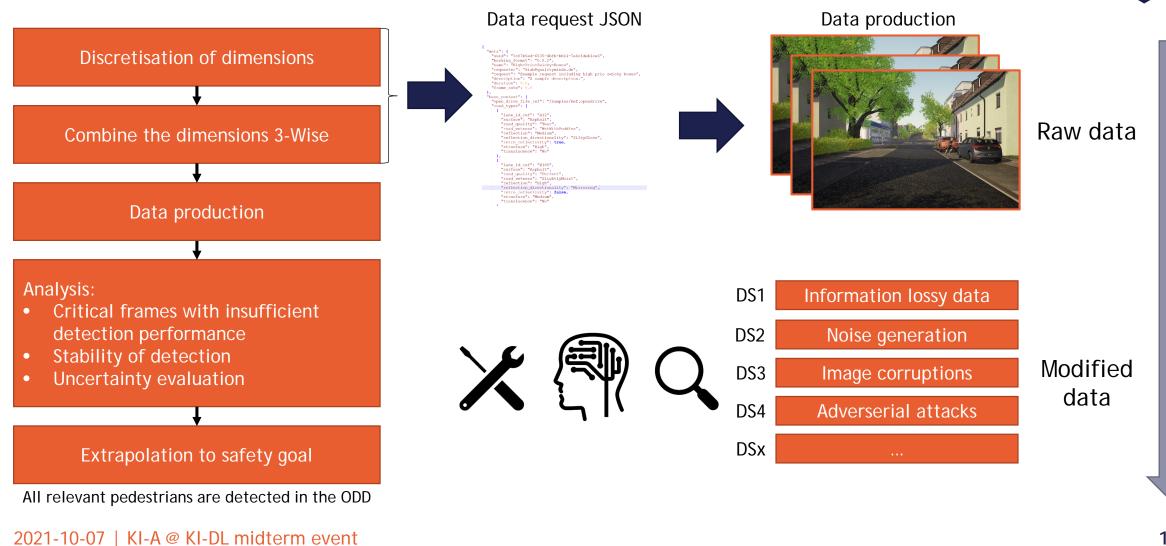

Systematic Combination of variations

Dimension	Person1	Person2	Person3	
Age	Child	Teenager	Adult	
Gender	Male	Female	Male	
Body height	80-120 cm	120-160 cm	160-200 cm	
Pose	Running	Lying	Walking	
Pedestrian Location	Middle of street	Left side walk	Right side walk	

Systematically identify and describe the (known / expected) key input space dimensions and their possible variations & combinations having an influence on the functional performance of a DNN-based function

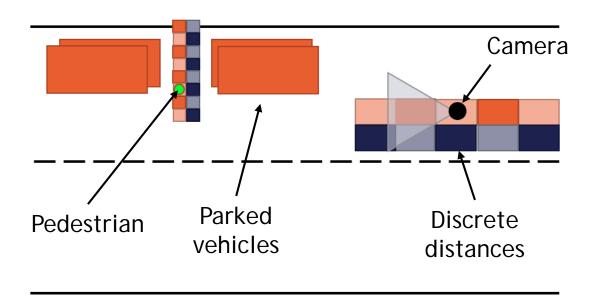
Structured Incremental dataset generation to boost data coverage (Vision)

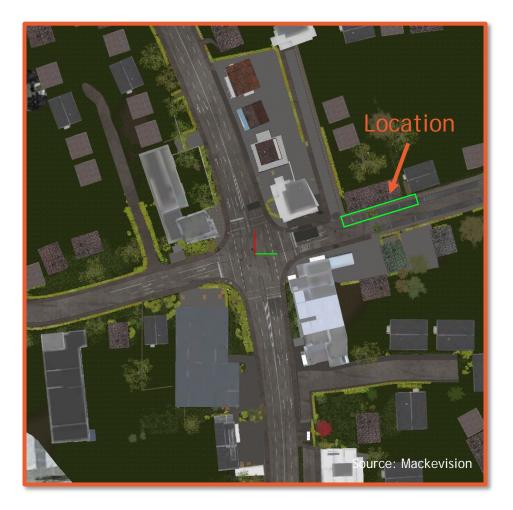
Test method result as input to Assurance Case (to be combined with other data related evidences)


NCAP inspired test data production process

ML-Lifecycle-Validation data

Relations to the safety assurance with NCAP like scenarios

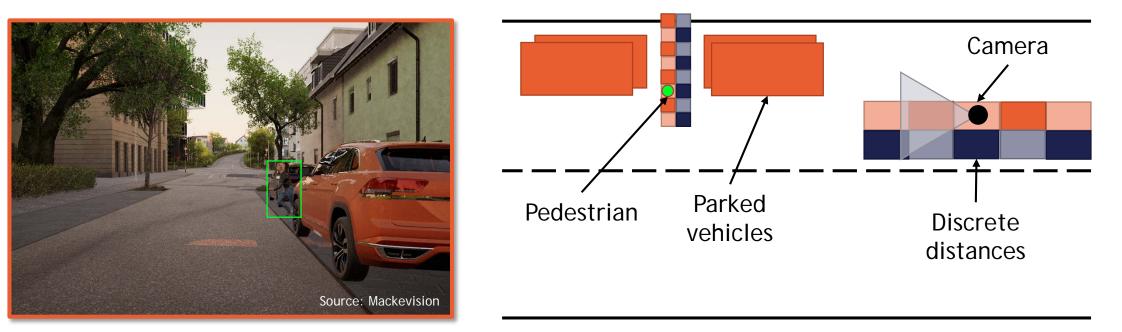



Definition of base scenario and location on base context

Story

A pedestrian is approaching the ego vehicle between two parking cars under different environment conditions

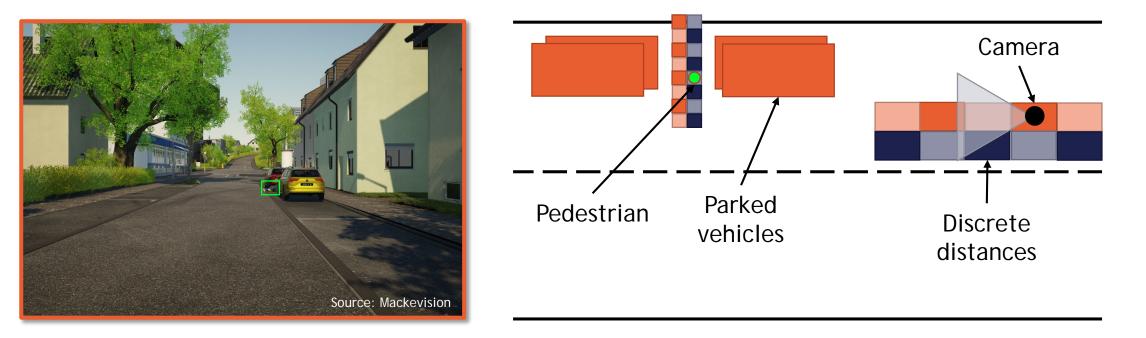
Discretization of dimensions in "Zwicky Boxes"


Ego XY position po			pos-0-0	ро	s-0-1	pos-0-2 pos-		-0-3 pos-0-4		pos-	-0-5 pos-1-0		pos-1-1			pos-1-2	pos-1-3	os-1-3 pos-1		pos-:	1-5	
Pedestria	an XY pos	sition		pos-0-0	pos-1-0	pos-2-0	pos-3-0	pos-4-	0 po	s-5-0 pos	-6-0 ро	s-7-0	pos-0-1	pos-1-1	ро	os-2-1	pos-3-1	pos-4-1	pos-5-1	pos-6-	1 ро	os-7-1
Pedestrian pose				pose01 pc				pse02 pose03					pose						pose05			
Pedestrian asset			A1		A2		A3		A4			A6		A7		A8		A9		A10		
Pedestria	an hip dir	ection		d0		d45		d90		d13	5		d180			d225		d270 d315				
Parked v	ehicle 1 t	type		В	MW1		BMW2			BMW7I			VW ID.3				VW Golf 8	8 VW Atlas			as	
Parked vehicle 1 XY position			pos-0-	-0	pos-0-	pos-0-1 pos-0-2		2	pos-1-0		pos	pos-1-1 pos-1		1-2		pos-2-0		pos-2-1		pos-2-2		
Parked vehicle 1 color	BMW Black	BMW Cerium grey	BMW Melbourne red	BMW Mineral grey	BMW Misano blue	BMW Sao Paolo yellow	BMW Snapper Rocks blue	BMW Sunset orange	BMW White	VW Gletscher Weiss	VW Mangangi	au	VW Mekana Turquoise	VW Mondstein	grau	VW Scale Silver	VW Stonewashed Blue	VW Energ Oran	etic De	ep Dolf	VW ingrau	VW Kings Red
Parked vehicle 2 type			BMW1			BMW2	BMW2 B			BMW7I VW ID.3					VW Golf 8			VW Atlas				
Parked vehicle 2 color	BMW Black	BMW Cerium grey	BMW Melbourne red	BMW Mineral grey	BMW Misano blue	BMW Sao Paolo yellow	BMW Snapper Rocks blue	BMW Sunset orange	BMW White	VW Gletscher Weiss	VW Mangangi	au	VW Mekana Turquoise	VW Mondstein	grau	VW Scale Silver	VW Stonewashed Blue	VW Energ Oran	etic De	ep Delf	VW Îngrau	VW Kings Red
Illumenation				direct sun								diffuse light										
Sun direction			d0		d45		d90		d13	d135		d180			d225		d270	d270		d315		
Sun elevation				low				medium						day								
Road sur	face			Α					ВСС				С	D								

Source: Bosch

- **Discretization**: The most critical dimensions are identified and discretized
- Test coverage: With pairwise testing it's possible to achieve a high error coverage in traditional software testing

Data production - Example data snapshot 1


- Safety critical: Pedestrian has a running pose towards the camera
- The perception function shall be able to detect the pedestrian early enough without any image perturbations

• Those images are well suited as a reference for the analysis of brittleness in DNN's

Data production - Example data snapshot 1

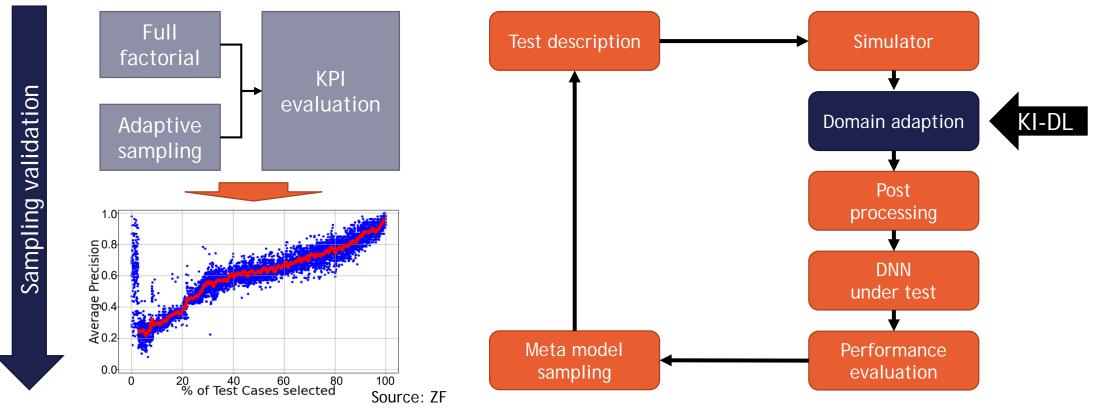
- Safety critical: The legs are extended to the driving lane
- Uncommon pose: Pedestrian lays between two vehicles and is difficult to see
- In which combinations is the object detector **not** capable to perceive the pedestrian?

Examples for data post processing

brightness

fog

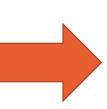
contrast


frost

Motion blur

Test space exploration optimization

The most performance critical test cases are identified early in the test exploration "Adaptive test case selection for DNN-based perception functions" Paper release: ISSE 2021 - 7th IEEE International Symposium on Systems Engineering (ieeeisse.org)


Synthetic video data for domain adaptation studies @ KI-Absicherung

Variation of sensor parameters

- High vs. Low resolution
- Camera opening angle (field of view)
- Height of camera over ground

Conclusion & Outlook

Conclusion

- Systematic structuring of training, test and assurance data is expected to be a crucial basis for safety assurance
- Challenging and safety critical scenes are structured based on expert knowledge
- An initial systematic coverage of test cases is provided by a combinatorial testing approach and further improved by an adaptive sampling strategy
- The "good" test cases are challenged by further augmentations and corruptions
- The newly created data set can be used for a benchmarking of DNN based perception algorithms

Proposals for KI-DL

- Embed the KI-A ontology knowledge into semi-supervised and unsupervised learning approaches from KI-DL
- Integrate domain adaption methods from KI-DL into the test space exploration pipeline